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Motivation

Fuzzers are valuable tools 
because they find real bugs 

in real-world systems.
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Motivation

Bug finding is undecidable, 
fuzzers rely on heuristics.
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In Fact...
0) Design statement
-------------------

American Fuzzy Lop does its best not to focus on any singular principle of
operation and not be a proof-of-concept for any specific theory. The tool can
be thought of as a collection of hacks that have been tested in practice,
found to be surprisingly effective, and have been implemented in the simplest, most 
robust way I could think of at the time.

AFL, Michał Zalewski, 2013
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Motivation

What are the limits of current 
(coverage-guided) fuzzing 

heuristics?
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Motivation

How do we find those limits?
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Motivation

Unlike formal methods, fuzz 
testing lacks a fundamental 

theory.
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Motivation

Unlike formal methods, fuzz 
testing lacks a fundamental 

theory.

We rely entirely on empirical 
observations to evaluate its 

effectiveness.
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based on (benchmark) program 

suites.

Semantic Space of all possible 
program behaviors
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Motivation
Existing empirical methods are 
based on (benchmark) program 

suites.

Semantic Space of all possible 
program behaviors

 Piecewise static exploration 
of the semantic space.

 Risk of overfitting/bias.
 What if my PUT is 

behaviorally very different?
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What about exploring the semantic space 

more systematically?
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Motivation
What about exploring the semantic space 
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Semantic Space of all possible 
program behaviors
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TEPHRA
Principled Methodology to Empirically 

Discover Fuzzer Limitations
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TEPHRA

Principled Methodology = Analytical Model + Semantics-guided Program Synthesis
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TEPHRA

Principled Methodology = Analytical Model + Semantics-guided Program Synthesis
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TEPHRA

Yields optimistic upper bounds.
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TEPHRA

Systematically probes the semantic space
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TEPHRA

Synthesis is pseudorandom to reduce the risk of overfitting.
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TEPHRA

Obstacle programs are bug-free.
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TEPHRA

Complements existing fuzzing evaluation methods.
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TEPHRA-C/C++
 Implementation for C and C++
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TEPHRA-C/C++: Synthesizing Obstacles
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TEPHRA-C/C++: Synthesizing Obstacles
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Empirical Study 
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Empirical Study 

26 C/C++ semantic obstacles
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Empirical Study 

26 C/C++ semantic obstacles
31 Fuzzers

37.4 CPU years
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Results
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Results: Hunting for

Stable vs. Unstable Behavior
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Results: Hunting for Anomalies

Stable vs. Unstable Behavior
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Results: Performance Differences 
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Results: Performance Differences 
Algorithmic 
feasibility
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Results: Summary
 All fuzzers struggle with certain semantic constructs.
 Support for rational numbers and character strings lacking.
 Signed integers more difficult than unsigned.
 Overtuning for 32- and 64-bit types, neglecting 8- and 16-bit.
 No fuzzer excels across all obstacles.
 A single obstacle can degrade overall performance.
 ~90% stable obstacle bypasses.
 There are bugs in the fuzzers themselves.



48

Results: Byproducts

clang version 20.1.0
...
PLEASE submit a bug report to https://github.com/llvm/llvm-project/issues/ 
and include the crash backtrace, preprocessed source, and associated run script.
Stack dump:
...
1. bool_chain_exp/tc_8192.c:29661:27: current parser token ')'
2. bool_chain_exp/tc_8192.c:9:58: parsing function body 
'LLVMFuzzerTestOneInput'
3. bool_chain_exp/tc_8192.c:9:58: in compound statement ('{}')
clang: error: unable to execute command: Segmentation fault
clang: error: clang frontend command failed due to signal (use -v to see invocation)
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Summary and Conclusion
 Contributions

 TEPHRA: principled methodology to empirically 
discover fuzzer limitations.

 TEPHRA-C/C++: implementation for C/C++.
 Initial study: counterintuitive limitations found.

 Next Steps
 Further experimentation.
 Extend semantics for C/C++.
 Implementation for other PLs.
 Fuzzing based on obstacle profiles.

ucsrl.de/research/tephra

Find us at the poster session!
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