
TEPHRA: Principled Discovery of Fuzzer 
Limitations

Vasil Sarafov, David Markvica, Stefan Brunthaler
ASE’25, Seoul, South Korea, November 16-20, 2025



2

Motivation

Fuzzers are valuable tools 
because they find real bugs 

in real-world systems.



3

Motivation

Bug finding is undecidable, 
fuzzers rely on heuristics.



4

In Fact...
0) Design statement
-------------------

American Fuzzy Lop does its best not to focus on any singular principle of
operation and not be a proof-of-concept for any specific theory. The tool can
be thought of as a collection of hacks that have been tested in practice,
found to be surprisingly effective, and have been implemented in the simplest, most 
robust way I could think of at the time.

AFL, Michał Zalewski, 2013



5

Motivation

What are the limits of current 
(coverage-guided) fuzzing 

heuristics?



6

Motivation

How do we find those limits?



7

Motivation

Unlike formal methods, fuzz 
testing lacks a fundamental 

theory.



8

Motivation

Unlike formal methods, fuzz 
testing lacks a fundamental 

theory.

We rely entirely on empirical 
observations to evaluate its 

effectiveness.



9

Motivation
Existing empirical methods are 
based on (benchmark) program 

suites.

Semantic Space of all possible 
program behaviors



10

Motivation
Existing empirical methods are 
based on (benchmark) program 

suites.

Semantic Space of all possible 
program behaviors

 Piecewise static exploration 
of the semantic space.



11

Motivation
Existing empirical methods are 
based on (benchmark) program 

suites.

Semantic Space of all possible 
program behaviors

 Piecewise static exploration 
of the semantic space.



12

Motivation
Existing empirical methods are 
based on (benchmark) program 

suites.

Semantic Space of all possible 
program behaviors

 Piecewise static exploration 
of the semantic space.



13

Motivation
Existing empirical methods are 
based on (benchmark) program 

suites.

Semantic Space of all possible 
program behaviors

 Piecewise static exploration 
of the semantic space.



14

Motivation
Existing empirical methods are 
based on (benchmark) program 

suites.

Semantic Space of all possible 
program behaviors

 Piecewise static exploration 
of the semantic space.

 Risk of overfitting/bias.



15

Motivation
Existing empirical methods are 
based on (benchmark) program 

suites.

Semantic Space of all possible 
program behaviors

 Piecewise static exploration 
of the semantic space.

 Risk of overfitting/bias.
 What if my PUT is 

behaviorally very different?



16

Motivation
What about exploring the semantic space 

more systematically?

Semantic Space of all possible 
program behaviors



17

Motivation
What about exploring the semantic space 

more systematically?

Semantic Space of all possible 
program behaviors



18

Motivation
What about exploring the semantic space 

more systematically?

Semantic Space of all possible 
program behaviors



19

Motivation
What about exploring the semantic space 

more systematically?

Semantic Space of all possible 
program behaviors



20

TEPHRA
Principled Methodology to Empirically 

Discover Fuzzer Limitations



21

TEPHRA



22

TEPHRA



23

TEPHRA



24

TEPHRA



25

TEPHRA



26

TEPHRA



27

TEPHRA



28

TEPHRA

Principled Methodology = Analytical Model + Semantics-guided Program Synthesis



29

TEPHRA

Principled Methodology = Analytical Model + Semantics-guided Program Synthesis



30

TEPHRA

Yields optimistic upper bounds.



31

TEPHRA

Systematically probes the semantic space



32

TEPHRA

Synthesis is pseudorandom to reduce the risk of overfitting.



33

TEPHRA

Obstacle programs are bug-free.



34

TEPHRA

Complements existing fuzzing evaluation methods.



35

TEPHRA-C/C++
 Implementation for C and C++



36

TEPHRA-C/C++: Synthesizing Obstacles



37

TEPHRA-C/C++: Synthesizing Obstacles



38

Empirical Study 



39

Empirical Study 

26 C/C++ semantic obstacles



40

Empirical Study 

26 C/C++ semantic obstacles
31 Fuzzers



41

Empirical Study 

26 C/C++ semantic obstacles
31 Fuzzers

37.4 CPU years



42

Results

 



43

Results: Hunting for

Stable vs. Unstable Behavior



44

Results: Hunting for Anomalies

Stable vs. Unstable Behavior



45

Results: Performance Differences 



46

Results: Performance Differences 
Algorithmic 
feasibility



47

Results: Summary
 All fuzzers struggle with certain semantic constructs.
 Support for rational numbers and character strings lacking.
 Signed integers more difficult than unsigned.
 Overtuning for 32- and 64-bit types, neglecting 8- and 16-bit.
 No fuzzer excels across all obstacles.
 A single obstacle can degrade overall performance.
 ~90% stable obstacle bypasses.
 There are bugs in the fuzzers themselves.



48

Results: Byproducts

clang version 20.1.0
...
PLEASE submit a bug report to https://github.com/llvm/llvm-project/issues/ 
and include the crash backtrace, preprocessed source, and associated run script.
Stack dump:
...
1. bool_chain_exp/tc_8192.c:29661:27: current parser token ')'
2. bool_chain_exp/tc_8192.c:9:58: parsing function body 
'LLVMFuzzerTestOneInput'
3. bool_chain_exp/tc_8192.c:9:58: in compound statement ('{}')
clang: error: unable to execute command: Segmentation fault
clang: error: clang frontend command failed due to signal (use -v to see invocation)



49

Summary and Conclusion
 Contributions

 TEPHRA: principled methodology to empirically 
discover fuzzer limitations.

 TEPHRA-C/C++: implementation for C/C++.
 Initial study: counterintuitive limitations found.

 Next Steps
 Further experimentation.
 Extend semantics for C/C++.
 Implementation for other PLs.
 Fuzzing based on obstacle profiles.

ucsrl.de/research/tephra

Find us at the poster session!


	Slide 1
	Slide 2
	Motivation
	In Fact...
	Motivation (2)
	Motivation (3)
	Motivation (4)
	Motivation (5)
	Motivation (10)
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Motivation (11)
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	tephra
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	tephra-c/c++: Synthesizing Obstacles
	Slide 37
	Empirical Study (3)
	Slide 39
	Slide 40
	Slide 41
	Results
	Results: Hunting for Anomalies
	Slide 44
	Results: Performance Differences
	Slide 46
	Slide 47
	Results: Byproducts
	Summary and Conclusion

