
TEPHRA Principled Discovery of Fuzzer

Limitations

Vasil Sarafov Stefan BrunthalerDavid Markvica

Bug finding is undecidable, fuzzers rely on heuristics.
How hard is “too hard” for a fuzzer?
Which heuristics work best for specific obstacles?

Fuzzers have limitations

TEPHRA: principled methodology that yields optimistic upper bounds.
Reduces overfitting & complements existing evaluation approaches.
Systematically probes the semantic space.

How to identify fuzzer limitations?

31 fuzzers, 26 C/C++ semantic obstacles, 37.4 CPU years

int LLVMFuzzerTestOneInput(const uint8_t *data,
 size_t size) {
 uint16_t x, y, z, u;
 if (size < 8)
 return TEPHRA_EXIT_FAILURE;

 memcpy(&x, &data[0], 2);
 memcpy(&y, &data[2], 2);
 memcpy(&z, &data[4], 2);
 memcpy(&u, &data[6], 2);

 if (x == 38951)
 if (y == 13747)
 if (z == 54130)
 if (u == 7810)
 BOOM();

 return TEPHRA_EXIT_SUCCESS;
}

Increasing

Complexity

TEPHRA

TEPHRA-C/C++

All fuzzers struggle with certain semantic constructs.
Support for rational numbers and character strings lacking.
Signed integers more difficult than unsigned.
Overtuning for 32- and 64-bit types, neglecting 8- and 16-bit.
No fuzzer excels across all obstacles.
A single obstacle can degrade overall performance.
~90% reliable bypasses; ~10% due to fluctuating randomness.

Results
Algorithmic
feasibility

ucsrl.de/research/tephra

stable vs. unstable behavior

Further experiments.
Fuzzing based on an obstacle profile.
Extend implementation with additional semantics and PLs.

Next Steps

	Slide 1

