
Towards Efficient and Verified Virtual Machines for
Dynamic Languages

Martin Desharnais
National Cyber Defence Research Institute (CODE)

Universität der Bundeswehr München
Germany

martin.desharnais@unibw.de

Stefan Brunthaler
National Cyber Defence Research Institute (CODE)

Universität der Bundeswehr München
Germany

brunthaler@unibw.de

Abstract

The prevalence of dynamic languages is not commensurate
with the security guarantees provided by their execution
mechanisms. Consider, for example, the ubiquitous case of
JavaScript: it runs everywhere and its complex just-in-time
compilers produce code that is fast and, unfortunately, some-
times incorrect.
We present an Isabelle/HOL formalization of an alterna-

tive execution modelÐoptimizing interpretersÐand mechan-
ically verify its correctness. Specifically, we formalize ad-
vanced speculative optimizations similar to those used in
just-in-time compilers and prove semantics preservation. As
a result, our formalization provides a path towards unify-
ing vital performance requirements with desirable security
guarantees.

CCS Concepts: · Software and its engineering → Cor-
rectness; Software verification; Software performance; ·
Security and privacy → Software and application security.

Keywords: formalization and verification, Isabelle, seman-
tics, dynamic typing, speculative optimizations, interpreters,
just-in-time compilers, inline caching, unboxing
ACM Reference Format:

Martin Desharnais and Stefan Brunthaler. 2021. Towards Efficient
and Verified Virtual Machines for Dynamic Languages. In Proceed-
ings of the 10th ACM SIGPLAN International Conference on Certified
Programs and Proofs (CPP ’21), January 18ś19, 2021, Virtual, Den-
mark. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/
3437992.3439923

1 Motivation

Every day, every person with a computer or smartphone ex-
ecutes enormous amounts of JavaScriptÐknowingly or not.

CPP ’21, January 18ś19, 2021, Virtual, Denmark

© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8299-1/21/01.
https://doi.org/10.1145/3437992.3439923

Confident that the machinery executing JavaScript works
correctly, we use it day in and day out. A closer look at the
correctness of JavaScript virtual machines shows that this
confidence is unwarranted. Through abuse of implementa-
tion errors, attackers hijack victim devices through arbitrary
code execution. Recently, Google’s Project Zero published a
complete series on so-called łJITSploitationž [18ś20].
This should not come as a surprise, particularly as prior

research has already looked at the prevalence of implementa-
tion errors in compilers [51]. Their comparison of the LLVM,
GCC, and CompCert compilers provides strong evidence of
the power of formalization and verification to reduce imple-
mentation errors.
To establish confidence in the JavaScript computing ma-

chinery, onewould have to replicate the CompCert [30] effort
for a JavaScript virtual machine. Prior research has shown
that this approach is non-trivial [36]. Just-in-time compilers
rely on self-modification and speculative optimizations to
speed up programs. Both of these optimization techniques
are at odds with the CompCert approach.

An alternative strategy to overcome these obstacles would
be to sidestep just-in-time compilation and focus on inter-
preters instead. The expected advantages are ease of imple-
mentation, no self-modification, and no dynamic generation
of native-machine code. Together, these advantages would
also simplify the formalization and verification process.
But what kind of impact would such a strategy have on

performance? Conventional wisdom states that interpreters
are slow, and that performance requires just-in-time compi-
lation. Prior research in interpreter optimization, however,
reports remarkable and important speedups [8, 9, 13, 45, 50].

In this paper, we build on prior results in interpreter opti-
mization to formalize and mechanically verify speculative
optimizations: inline caching and unboxing. This formaliza-
tion gives way to virtual machine interpreters that are both
efficient and correct. Since our technique applies to all dy-
namic programming languages, it enables the construction
of efficient and correct virtual machine interpreters for many
popular languages, such as Lua, Perl, Python, and Ruby.

While these verifiably correct interpreters will not match
the peak performance of their highly tuned just-in-time com-
piled counterparts, they offer acceptable performance for a

61

This work is licensed under a Creative Commons Attribution-NonCommercial
International 4.0 License.

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3437992.3439923
https://doi.org/10.1145/3437992.3439923
https://doi.org/10.1145/3437992.3439923
https://creativecommons.org/licenses/by-nc/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3437992.3439923&domain=pdf&date_stamp=2021-01-20

CPP ’21, January 18ś19, 2021, Virtual, Denmark Martin Desharnais and Stefan Brunthaler

1 JSValue jsAdd(JSGlobalObject* global , JSValue v1, JSValue v2) {

2 if (v1.isNumber () && v2.isNumber ())

3 return jsNumber(v1.asNumber () + v2.asNumber ());

4

5 if (v1.isString () && !v2.isObject ()) {

6 if (v2.isString ())

7 return jsString(global , asString(v1), asString(v2));

8 String s2 = v2.toWTFString(global);

9 return jsString(global , asString(v1), s2);

10 }

11

12 // All other cases are pretty uncommon

13 return jsAddSlowCase(global , v1, v2);

14 }

v1: Int
v2: Int

v1: String
v2: Int

v1: Object
v2: Object

Figure 1. Resolving dynamic types and its impact on control flow. Squiggly lines indicate branches taken, dashed lines branches
not taken. Arrows and horizontal lines indicate function entry and exit, i.e., calls and returns, respectively.

variety of tasks and computational needs. We believe, there-
fore, that using these efficient and verifiably correct inter-
preters is preferable in safety-critical, high-assurance con-
texts. In addition, these interpreters can form the backbone
of secure, trusted infrastructure that we can rely upon when
new just-in-time compiler bugs are exploited in the wild.
Summing up, this paper makes the following contribu-

tions:

• We present a formalization of self-optimizing byte-
code interpreters for dynamically typed programming
languages. In particular, we formalized advanced type
feedback via inline caching and its extension to allow
the manipulation of data in native-machine represen-
tation. Our formalization abstracts over the specific
dynamic language and can be instantiated for many
concrete languages.

• We prove both speculative optimizations to be sound
and investigate their completeness. In addition, we
show exemplary optimizing compilation passes, prove
their soundness, and discuss their completeness.

Our work was developed using the Isabelle/HOL proof
assistant. The theory files amount to around 4700 lines of
source text and are publicly available in the Archive of For-
mal Proofs [11]. The AFP is continuously updated to track
Isabelle’s evolution, ensuring compatibility of the archived
formalizations with future Isabelle versions.1

1Our formalization will be part of the next public AFP release, expected

at the beginning of 2021. Before this release, use revision cb82935ea66a of

the AFP development repository available at https://foss.heptapod.net/isa-

afp/afp-devel.

2 Background

Overhead of Dynamic Typing Figure 1 shows, on the left-
hand side, the slightly simplified implementation of the add
operation in JavaScriptCore, WebKit’s JavaScript implemen-
tation, which is the open source version of Apple’s Safari
web browser. The dynamically-typed add operation resolves
concrete type assignments according to the expected fre-
quency. First, JavaScriptCore delegates to C++’s addition
operator when both operands, v1 and v2, are numeric (lines
2 and 3 in Figure 1). Second, JavaScriptCore performs string
concatenation, including coercion of the second operand,
when the first operand is a string (lines 5ś10 in Figure 1).
Third, JavaScriptCore delegates implementation to jsAdd-
SlowCase in all other cases (line 13), which is deemed łpretty
uncommonž in the actual and original source code comment
on line 12.

Figure 1 shows, on the right-hand side, the control flow in-
cluding required branches for different operand type assign-
ments. When both operands have type integer (Int in Fig-
ure 1, right-hand side, left column), control-flow takes the
first branch and returns. When the first operand is a string
(string in Figure 1, right-hand side, middle column), control
flow requires at least one branch for testing against integers,
plus a second branch if the second argument is not a string
and needs to be coerced before returning the concatenated
string. In all other cases, indicated by Object type assign-
ments in the right column of Figure 1, the operation execu-
tion is delegated to yet another function, jsAddSlowCase,
which requires two branches to determine less likely type
assignments.

62

https://foss.heptapod.net/isa-afp/afp-devel
https://foss.heptapod.net/isa-afp/afp-devel

Towards Efficient and Verified Virtual Machines for Dynamic Languages CPP ’21, January 18ś19, 2021, Virtual, Denmark

From a performance perspective, the implementation of
the add operator in Figure 1 indicates the performance penal-
ties when type assignment expectations are not met. Con-
sider a frequently executed, tight loop with a single string
concatenation:

1 result = "";

2 for (i = 0; i < 100000; i++) {

3 result += i;

4 }

In this example, the add operation will incur four branches
to concatenate strings for all iterations. These branches are,
however, redundant, as the type assignments of the operands
for that specific occurrence of the add operation are invariant.
If the string operands case were ranked first, then none of
these branches were required, with the downside that now
integer operands would suffer from the surplus type checks.

The effect of suboptimal static type-encoding in operation
implementations of dynamic languages, as illustrated by the
example above, has been known for decades. In 1982, Baden
analyzed Smalltalk code and discovered what he termed
a łdynamic locality of type usage.ž [3] In their landmark
paper from 1984, Deutsch and Schiffman described what
was to become one, if not the most, important optimization
techniques to address this problem: inline caching [12]. In its
original form, inline caching means that the virtual machine
directly overwrites the target address of a call instruction in
memory. So instead of calling the default routine that checks
the types of all parametersÐe.g., the type-generic function
shown in Figure 1Ðone would overwrite the address of the
call instruction to type-dependent function, prefixed with
so-called guards, i.e., type checks to ensure that the expected
types were passed. As a result, a subsequent execution of
the same instruction will łshort-circuitž the type checks and
merely guard against expected types.

Overhead of Boxed Data Objects Boxed objects wrap prim-
itive data types, such as numbers or characters. These primi-
tive data usually can be manipulated using efficient native-
machine operations and data representations. łBoxingž prim-
itive data involves replacing the data item with a reference
to an object representing the primitive data item. The result-
ing boxed object can, therefore, not be directly manipulated:
assume that two numbers are in boxed object representation,
then a simple machine addition, would add their addresses,
instead of their numeric values. To manipulate boxed objects,
their wrapped primitive data need to be łunboxedž first.
Boxing and unboxing requires surplus computation: to

access the wrapped data, the computer must resolve the data
references in the boxed objects. Additional operations, most
often related to automatic memory management, must be
taken into consideration as well. In Python, for example,
each push operation that puts data onto the operand stack
needs to adjust the object’s reference count. Native-machine
data, on the other hand, need not be reference counted, as

they exist on their own in binary representation and need
no automatic memory management.
With unboxing, data locality is improved, as the indirec-

tion via the boxed object wrapper is eliminated. Automatic
memory management operations are reduced, as these oper-
ations are only required to manage boxed objects. Overall
memory consumption can be reduced, because fewer objects
are required. Automatic memory management techniques
can be adjusted to take this into account. This effect is most
pronounced on immediate memory management techniques
such as reference counting.
On the other hand, boxed objects can be easily stored in

the heap, and all other operations can refer to them in a
uniform way using references or addresses. Boxed objects,
furthermore, simplify the implementation of custom object
and type systems.

3 Overview of the Formalization

Our formalization has three parts, each concerned with a
separate programming language.
Dyn (Section 4) is a standard stack-based interpreter for

dynamic languages, it provides a baseline for optimizations.
The features provided byDyn are intentionally kept minimal,
but include themost representative features found in existing
virtual machine interpreters for dynamic languages: operand
stack manipulation, dynamic memory manipulation, built-
in operations, conditional jumps, and (possibly recursive)
function calls.

Inca (Section 5) extends Dyn with a speculative optimiza-
tion known as inline caching. This type-based optimization
is embedded directly in the semantics and, thus, performed
automatically at run time. If the encountered types of an
inlined operation match our speculation, the optimization
is said to be a hit. Otherwise, the optimization is said to be
a miss and must be rolled back. To ensure the soundness of
this speculative optimization, we define a relation between
unoptimized Dyn and optimized Inca programs, and prove
that it is a bisimilarity, meaning that the compiled program
has the same behavior as the unoptimized one and vice versa.
In addition, we provide a simple compilation scheme and
prove its soundness and completeness.

Ubx (Section 6) extends Inca with operations to manipu-
late unboxed, native-machine data. This optimization is also
type-based but proceeds in two stages. First, an optimization
pass rewrites the program ahead of time by substituting some
type-generic instructions with type-specific alternatives that
directly manipulate unboxed data. Second, the semantics is
extended to perform the minimum number of checks at run
time to ensure that the type-specific, optimized instructions
rewritten in the first stage operate on the expected types and
roll the optimization back if needed. Again, the soundness of
this optimization is based on a bisimilarity relation, this time

63

CPP ’21, January 18ś19, 2021, Virtual, Denmark Martin Desharnais and Stefan Brunthaler

between unoptimized Inca programs and optimizedUbx pro-
grams. We provide an exemplary compilation scheme, too,
based on a simple static analysis, and prove its soundness.We
finish by discussing the incompleteness of this compilation
scheme and some possible way forward.

We stove to keep the languages highly general by abstract-
ing over a variety of implementation considerations. The
most important abstraction is concerned with built-in op-
erations. Instead of fixing a small set of these operations
(such as arithmetic and Boolean operations) and optimiz-
ing them, we instead define an algebra of operations. For
any operation of the algebra’s carrier set, we can (i) deter-
mine the operation’s arity,2 and (ii) evaluate the operation on
the given arguments. The semantics of all three languages,
therefore, needs only to ensure that operations receive the
correct number of arguments, and manipulate their results
accordingly. By construction, this technique ensures that our
formalization supports all operations, and we can mostly
avoid arguing łwithout loss of generality.ž
To optimize these abstract operations, we progressively

introduce more ways to manipulate the operations and check
for speculative optimization opportunities. Thereby we are
forced to state our formalization’s assumptions.

Notation In the following paper, different typefaces or col-
ors are used to identify different concepts. A ′blue color,
prefixed with a backtick, is used for abstract types and a
green color from their abstract operations, which we will
call parameters from now on to distinguish them from the
built-in operations of the discussed languages. In contrast, a
monospace typeface is used for concrete functions, defined
either in this formalization or in the Isabelle/HOL standard
library.

4 Dyn: Stack-Based Interpreter for
Dynamically Typed Languages

The Dyn language corresponds to a simple, stack-based byte-
code interpreter to execute a dynamically typed program-
ming language. Figure 2 shows the syntax and dynamic state
of Dyn.

4.1 Syntax and Semantics

Identifiers The identifiers for variables and functions are
members of the abstract types ′var and ′fun , respectively.

Values The manipulated values belong to the abstract type
′dyn . Dyn’s semantics uses two disjoint subsets to decide
whether values are true or false. Let 𝑥 be a value, IsTrue 𝑥
identifies the former, and IsFalse 𝑥 the latter. This semantics
is not affected by providing support for more types. Formally:

locale dynval =
fixes

2All operations always return exactly one result. An operation with an arity

of zero is equivalent to a constant.

instr ::= Push ′dyn | Pop | stack manipulation

Load ′var | Store ′var | memory manipulation

Op ′op | operations on data

CJump nat | conditional jump

Call ′fun function call

fundef ::= Fundef instr∗ nat function definition

prog ::= Prog ′fenv ′henv ′fun program definition

frame ::= Frame ′fun nat ′dyn
∗ stack frame

state ::= ⟨′fenv , ′henv , frame+⟩ program state

Figure 2. The static syntax and dynamic state of Dyn.

IsTrue :: ′dyn ⇒ bool and
IsFalse :: ′dyn ⇒ bool

assumes

¬ (IsTrue 𝑥 ∧ IsFalse 𝑥)

In Isabelle, a locale [4] is a (possibly heterogeneous) alge-
bra over some abstract types, with parameters, and subject
to some assumptions. In the previous example, ′dyn is the
abstract type, IsTrue and IsFalse are the parameters, and the
last line represents our assumption. A locale may then be
later instantiated by providing concrete arguments for the
types and parameters, and then discharging the proof obliga-
tions corresponding to the assumptions. All theorems proven
for the locale are then automatically specialized for the con-
crete arguments. As a sanity check, all locales defined in this
formalization were instantiated with suitable examples to
ensure that the assumptions are consistent.

Operations The built-in operations are members of the type
′op of the locale nary_operations. Let 𝑜𝑝 be an operation,
Arity 𝑜𝑝 evaluates to 𝑜𝑝’s arity. Op 𝑜𝑝 𝑥𝑠 evaluates 𝑜𝑝 on
provided arguments 𝑥𝑠; it is defined if and only if |𝑥𝑠 | =
Arity 𝑜𝑝 . Formally:

locale nary_operations =
fixes

Op :: ′op ⇒ ′dyn list ⇒ ′dyn and

Arity :: ′op ⇒ nat

Environments The environments are partial mappings from
keys to values. In this paper, the important operations are
Get 𝑒 𝑘 , which retrieves the value associated with key 𝑘 from
the environment 𝑒 , and Add 𝑒 𝑘 𝑣 , which binds the key 𝑘

with the value 𝑣 in the environment 𝑒 , overriding any prior
bindings. Formally:

locale env =
fixes

Get :: ′env ⇒ ′key ⇒ ′val option and

Add :: ′env ⇒ ′key ⇒ ′val ⇒ ′env and . . .
assumes

64

Towards Efficient and Verified Virtual Machines for Dynamic Languages CPP ’21, January 18ś19, 2021, Virtual, Denmark

→Dyn-Push
FunGet 𝐹 𝑓 = Some fd 𝑝𝑐 < |body fd | body fd ! 𝑝𝑐 = Push 𝑑

⟨𝐹, 𝐻, Frame 𝑓 𝑝𝑐 Σ · 𝑠𝑡⟩ →Dyn ⟨𝐹, 𝐻, Frame 𝑓 (1 + 𝑝𝑐) (𝑑 · Σ) · 𝑠𝑡⟩

→Dyn-Pop
FunGet 𝐹 𝑓 = Some fd 𝑝𝑐 < |body fd | body fd ! 𝑝𝑐 = Pop

⟨𝐹, 𝐻, Frame 𝑓 𝑝𝑐 (𝑑 · Σ) · 𝑠𝑡⟩ →Dyn ⟨𝐹, 𝐻, Frame 𝑓 (1 + 𝑝𝑐) Σ · 𝑠𝑡⟩

→Dyn-Load
FunGet 𝐹 𝑓 = Some fd 𝑝𝑐 < |body fd | body fd ! 𝑝𝑐 = Load 𝑥 MemGet 𝐻 (𝑥, 𝑑1) = Some 𝑑2

⟨𝐹, 𝐻, Frame 𝑓 𝑝𝑐 (𝑑1 · Σ) · 𝑠𝑡⟩ →Dyn ⟨𝐹, 𝐻, Frame 𝑓 (1 + 𝑝𝑐) (𝑑2 · Σ) · 𝑠𝑡⟩

→Dyn-Store
FunGet 𝐹 𝑓 = Some fd 𝑝𝑐 < |body fd | body fd ! 𝑝𝑐 = Store 𝑥 𝐻 ′

= MemAdd 𝐻 (𝑥, 𝑑1) 𝑑2

⟨𝐹, 𝐻, Frame 𝑓 𝑝𝑐 (𝑑1 · 𝑑2 · Σ) · 𝑠𝑡⟩ →Dyn ⟨𝐹, 𝐻 ′, Frame 𝑓 (1 + 𝑝𝑐) Σ · 𝑠𝑡⟩

→Dyn-Op
FunGet 𝐹 𝑓 = Some fd 𝑝𝑐 < |body fd | body fd ! 𝑝𝑐 = Op 𝑜𝑝 𝑎𝑟 = Arith 𝑜𝑝 𝑎𝑟 ≤ |Σ| Op 𝑜𝑝 (take 𝑎𝑟 Σ) = 𝑑

⟨𝐹, 𝐻, Frame 𝑓 𝑝𝑐 Σ · 𝑠𝑡⟩ →Dyn ⟨𝐹, 𝐻, Frame 𝑓 (1 + 𝑝𝑐) (𝑑 · drop 𝑎𝑟 Σ) · 𝑠𝑡⟩

→Dyn-CJump-True
FunGet 𝐹 𝑓 = Some fd 𝑝𝑐 < |body fd | body fd ! 𝑝𝑐 = CJump 𝑛 IsTrue 𝑑

⟨𝐹, 𝐻, Frame 𝑓 𝑝𝑐 (𝑑 · Σ) · 𝑠𝑡⟩ →Dyn ⟨𝐹, 𝐻, Frame 𝑓 𝑛 Σ · 𝑠𝑡⟩

→Dyn-CJump-False
FunGet 𝐹 𝑓 = Some fd 𝑝𝑐 < |body fd | body fd ! 𝑝𝑐 = CJump 𝑛 IsFalse 𝑑

⟨𝐹, 𝐻, Frame 𝑓 𝑝𝑐 (𝑑 · Σ) · 𝑠𝑡⟩ →Dyn ⟨𝐹, 𝐻, Frame 𝑓 (1 + 𝑝𝑐) Σ · 𝑠𝑡⟩

→Dyn-Fun-Call
FunGet 𝐹 𝑓 = Some fd 𝑝𝑐 < |body fd | body fd ! 𝑝𝑐 = Call 𝑔 FunGet 𝐹 𝑔 = Some 𝑔𝑑 𝑎𝑟 = Arity 𝑔𝑑 𝑎𝑟 ≤ |Σ|

⟨𝐹, 𝐻, Frame 𝑓 𝑝𝑐 Σ · 𝑠𝑡⟩ →Dyn ⟨𝐹, 𝐻, Frame 𝑔 0 (take 𝑎𝑟 Σ) · Frame 𝑓 𝑝𝑐 Σ · 𝑠𝑡⟩

→Dyn-Fun-End
FunGet 𝐹 𝑔 = Some 𝑔𝑑 𝑝𝑐𝑔 = |body 𝑔𝑑 | 𝑎𝑟 = Arity 𝑔𝑑 𝑎𝑟 ≤ |Σ𝑓 |

⟨𝐹, 𝐻, Frame 𝑔 𝑝𝑐𝑔 Σ𝑔 · Frame 𝑓 𝑝𝑐 𝑓 Σ𝑓 · 𝑠𝑡⟩ →Dyn ⟨𝐹, 𝐻, Frame 𝑓 (1 + 𝑝𝑐 𝑓) (Σ𝑔 @ drop 𝑎𝑟 Σ𝑓) · 𝑠𝑡⟩

Figure 3. The (→Dyn) transition relation for Dyn.

Get (Add 𝑒 𝑘 𝑣) 𝑘 = Some 𝑣 and

𝑘1 ≠ 𝑘2 =⇒ Get (Add 𝑒 𝑘1 𝑣) 𝑘2 = Get 𝑒 𝑘2 and . . .

We use two environments, one for function definitions
(types ′fenv , ′fun , and fundef) and another one to model
dynamic memory (types ′henv , ′var × ′dyn , ′dyn). The pa-
rameters are prefixed with Fun and Mem, respectively.

Static representation Instructions belong to one of the fol-
lowing categories: manipulation of operand stack, manipu-
lation of dynamic memory, built-in operations, conditional
jumps, and function calls. Function definitions contain a list
of instructions and the function’s arity. Programs contain
an environment for functions, an initial memory, and an
initializing function.

Dynamic states Stack frames contain the identifier of the
current function, a program counter relative to the beginning
of the function, and a (possibly empty) operand stack. Pro-
gram states contain an environment for functions, an initial
memory, and a non-empty call stack.

Loading and initial states The binary loadDyn relation
associates the static representation of a program to an initial
dynamic program state. More precisely, the relation initial-
izes the program state, obtains the initializing function from
the program, and transfers control to this function.

Final states The predicate finalDyn identifies final states
the ones having a call stack with a single stack frame, where
the program counter points beyond the last instruction.

Operational semantics The operational semantics is de-
fined by the small-step transition relation →Dyn between
program states (Figure 3). Most instructions’ semantics cor-
responds to well-known, standard behavior. The dynamic
memory is partitioned by variable names, which are stati-
cally encoded in the load and store instructions, and each
partition may contain any number of dynamic values, which
are indexed by a dynamic value taken from the operand
stack.
The rule →Dyn-Op assumes that there are enough argu-

ments on the operand stack before evaluating the operation.
This assumption ensures that the function Op op is defined
for the list of operands take ar Σ.

Similarly, the rule→Dyn-Fun-Call assumes that the num-
ber of operands equals the arity of the called function. A
new stack frame is created, the arguments copied to the new
stack frame’s operand stack. Note that a function may call
itsefl recursively.

The rule →Dyn-Fun-End proceeds in two steps. First, the
remaining values on the called function’s operand stack are
interpreted as its result and its stack frame is discarded. Sec-
ond, the arguments on top of the calling function’s operand

65

CPP ’21, January 18ś19, 2021, Virtual, Denmark Martin Desharnais and Stefan Brunthaler

stack are replaced by the called function’s result and the
program counter is incremented.

The rule →Dyn-CJump-True transfers the control flow to
a position relative to the beginning of the function. Note that
execution gets stuck if a jump condition represents neither
true nor false.

5 Inca: Inline Caching

The Inca language extends Dyn with a single instruction for
inline caching of operations.

5.1 Syntax and Semantics

The syntax of Inca is a proper superset of Dyn’s syntax. The
only addition is an instruction to inline operations (Figure 4).

Inlined operations The built-in inlined operations aremem-
bers of the type ′opinl of the locale nary_operations_inl. Fig-
ure 5 illustrates the relationship between the sets ′op and
′opinl . An operation from ′op may be mapped to any num-
ber (including none) of inlined operations in ′opinl with Inl,
which gives the most specific inlined operation for concrete
operand types. This mapping may be inverted with Inl−1.
A typical implementation of the Inl function may start

with a case analysis of the operation followed by a linear
search for the most specific inlined function. Depending on
the cardinality of ′op and ′opinl , this may be time consuming
and should be avoided when possible. When we are evaluat-
ing an inline operation, it is more efficient to leverage the
łdynamic locality of type usagež by using IsInl to ensure that
the expected operand types and the actual operand types
match.
Finally, InlOp can be used to evaluate inline operations

with given arguments. It is defined if and only ifOp is defined
for the corresponding operation and given arguments. In
that case, the inlined and the normal operations must always
produce the same results. Formally:

locale nary_operations_inl = nary_operations +
fixes

InlOp :: ′opinl ⇒ ′dyn list⇒ ′dyn and

Inl :: ′op ⇒ ′dyn list ⇒ ′opinl option and

Inl−1 :: ′opinl ⇒ ′op and

IsInl :: ′opinl ⇒ ′dyn list ⇒ bool
assumes

Inl 𝑜𝑝 𝑥𝑠 = Some 𝑜𝑝𝑖𝑛𝑙 =⇒ Inl−1 𝑜𝑝𝑖𝑛𝑙 = 𝑜𝑝 and

Inl 𝑜𝑝 𝑥𝑠 = Some 𝑜𝑝𝑖𝑛𝑙 =⇒ IsInl 𝑜𝑝𝑖𝑛𝑙 𝑥𝑠 and

|𝑥𝑠 | = Arity (Inl−1 𝑜𝑝𝑖𝑛𝑙) =⇒

InlOp 𝑜𝑝𝑖𝑛𝑙 𝑥𝑠 = Op (Inl−1 𝑜𝑝𝑖𝑛𝑙) 𝑥𝑠

Semantics Inca’s dynamic representation, its loading re-
lation loadInca, and its set of final states (identified by the
predicate finalInca) are all the same as their Dyn counter-
parts. We modify the transition relation by adding three new
rules and modifying the existing rule→Dyn-Op to→Inca-Op

(Figure 6).

instr ::= · · · | instructions from Dyn

OpInl ′opinl inlined operations on data

Figure 4. The static syntax of Inca’s instructions.

Figure 5. The relationship between the set of values from
′op (left) and ′opinl (right). Solid arrows represent calls to
Inl and dotted arrows represent calls to Inl−1.

When executing an operation (Op), Inl is used to check if
an inlined operation exists for the supplied arguments. If no
such inlined operation exists (Rule →Inca-Op), then the op-
eration is evaluated with Op, and execution continues as in
Dyn. If such an inlined operation exists (Rule→Inca-Op-Inl),
then two things take place. First, we evaluate the operation
with InlOp. Second, we cache the search for an optimized
inline operation by replacing the Op instruction with an opti-
mized OpInl instruction in the function definition (rewrite).
As a result, any subsequent execution then łshort-circuitsž
the check for an inlined operation.

When executing an inlined operation (OpInl), the efficient
predicate IsInl is used to test whether it is still appropriate for
the supplied arguments. If they are, then execution continues
as expected using an optimized function (Rule→Inca-Op-Inl-

Hit). Otherwise, we undo the optimization by replacing the
optimized instruction with the generic, unoptimized instruc-
tion in the function definition (Rule →Inca-Op-Inl-Miss).
Whether we use Op or InlOp is irrelevant, since they are
semantically equivalent and because it is unknown which
one would be more efficient.

5.2 Bisimulation Dyn-Inca

A Dyn and an Inca program that simulate each other differ
only in the codomain of their functions environments. The
dynamic memories, the call stacks, and the domains of the
function environments are identical. Given two correspond-
ing function definitions from Dyn and Inca, they may only
differ by the potential use of inline operations.

The simulation relation
D-I
∼ thus inspects all corresponding

instructions and checks whether an inlined operation maps
to its corresponding regular operation. We use the inverse
function Inl−1 to map an inlined to its corresponding regular
operation.

66

Towards Efficient and Verified Virtual Machines for Dynamic Languages CPP ’21, January 18ś19, 2021, Virtual, Denmark

→Inca-Op

FunGet 𝐹 𝑓 = Some fd 𝑝𝑐 < |body fd | body fd ! 𝑝𝑐 = Op 𝑜𝑝

𝑎𝑟 = Arith 𝑜𝑝 𝑎𝑟 ≤ |Σ| Inl 𝑜𝑝 (take 𝑎𝑟 Σ) = None Op 𝑜𝑝 (take 𝑎𝑟 Σ) = 𝑑

⟨𝐹, 𝐻, Frame 𝑓 𝑝𝑐 Σ · 𝑠𝑡⟩ →Inca ⟨𝐹, 𝐻, Frame 𝑓 (1 + 𝑝𝑐) (𝑑 · drop 𝑎𝑟 Σ) · 𝑠𝑡⟩

→Inca-Op-Inl

FunGet 𝐹 𝑓 = Some fd 𝑝𝑐 < |body fd | body fd ! 𝑝𝑐 = Op 𝑜𝑝

𝑎𝑟 = Arith 𝑜𝑝 𝑎𝑟 ≤ |Σ| Inl 𝑜𝑝 (take 𝑎𝑟 Σ) = Some 𝑜𝑝𝑖𝑛𝑙 InlOp 𝑜𝑝𝑖𝑛𝑙 (take 𝑎𝑟 Σ) = 𝑑

𝐹 ′ = FunAdd 𝐹 𝑓 (rewrite fd 𝑝𝑐 (OpInl 𝑜𝑝𝑖𝑛𝑙))

⟨𝐹, 𝐻, Frame 𝑓 𝑝𝑐 Σ · 𝑠𝑡⟩ →Inca ⟨𝐹 ′, 𝐻, Frame 𝑓 (1 + 𝑝𝑐) (𝑑 · drop 𝑎𝑟 Σ) · 𝑠𝑡⟩

→Inca-Op-Inl-Hit

FunGet 𝐹 𝑓 = Some fd 𝑝𝑐 < |body fd | body fd ! 𝑝𝑐 = OpInl 𝑜𝑝𝑖𝑛𝑙
𝑜𝑝 = Inl−1 𝑜𝑝𝑖𝑛𝑙 𝑎𝑟 = Arith 𝑜𝑝 𝑎𝑟 ≤ |Σ| IsInl 𝑜𝑝𝑖𝑛𝑙 (take 𝑎𝑟 Σ) InlOp 𝑜𝑝𝑖𝑛𝑙 (take 𝑎𝑟 Σ) = 𝑑

⟨𝐹, 𝐻, Frame 𝑓 𝑝𝑐 Σ · 𝑠𝑡⟩ →Inca ⟨𝐹, 𝐻, Frame 𝑓 (1 + 𝑝𝑐) (𝑑 · drop 𝑎𝑟 Σ) · 𝑠𝑡⟩

→Inca-Op-Inl-Miss

FunGet 𝐹 𝑓 = Some fd 𝑝𝑐 < |body fd | body fd ! 𝑝𝑐 = OpInl 𝑜𝑝𝑖𝑛𝑙
𝑜𝑝 = Inl−1 𝑜𝑝𝑖𝑛𝑙 𝑎𝑟 = Arith 𝑜𝑝 𝑎𝑟 ≤ |Σ| ¬ IsInl 𝑜𝑝𝑖𝑛𝑙 (take 𝑎𝑟 Σ) InlOp 𝑜𝑝𝑖𝑛𝑙 (take 𝑎𝑟 Σ) = 𝑑

𝐹 ′ = FunAdd 𝐹 𝑓 (rewrite fd 𝑝𝑐 (Op 𝑜𝑝))

⟨𝐹, 𝐻, Frame 𝑓 𝑝𝑐 Σ · 𝑠𝑡⟩ →Inca ⟨𝐹 ′, 𝐻, Frame 𝑓 (1 + 𝑝𝑐) (𝑑 · drop 𝑎𝑟 Σ) · 𝑠𝑡⟩

Figure 6. The subset of the (→Inca) transition relation that differs from (→Dyn).

Following the path of CompCert, we proved the following

lemmas to show that
D-I
∼ is a bisimulation, i.e., that two similar

programs have similar behavior.

Lemma 1 (Forward simulation). If 𝑠1 →Dyn 𝑠 ′
1
and

𝑠1
D-I
∼ 𝑠2, then there exists a state 𝑠 ′

2
such that 𝑠2 →Inca 𝑠 ′

2

and 𝑠 ′
1

D-I
∼ 𝑠 ′

2
.

Lemma 2 (Forward matching final states). If 𝑠1
D-I
∼ 𝑠2 and

finalDyn 𝑠1, then finalInca 𝑠2.

Lemma 3 (Backward simulation). If 𝑠2 →Inca 𝑠 ′
2
and

𝑠1
D-I
∼ 𝑠2, then there exists a state 𝑠

′
1
such that 𝑠1 →Dyn 𝑠 ′

1
and

𝑠 ′
1

D-I
∼ 𝑠 ′

2
.

Lemma 4 (Backward matching final states). If 𝑠1
D-I
∼ 𝑠2 and

finalInca 𝑠2, then finalDyn 𝑠1.

5.3 Compilation from Dyn to Inca

Dyn’s function definitions can be compiled by mapping all
instructions to their equivalent in Inca. The compilation
function of full programs can then simply compile all func-
tion definitions of the program.

We proved that compiled programs simulate their uncom-
piled counterparts.

Lemma 5 (Compiled matching states). If compile 𝑝1 =

Some 𝑝2 and loadDyn 𝑝1 𝑠1, then there exists a state 𝑠2 such

that loadInca 𝑝2 𝑠2 and 𝑠1
D-I
∼ 𝑠2.

Building on the VeriComp framework for verified compi-
lation [10], lemmas 1 to 5 imply that the successful execution
of a compiled Inca program exhibits the identical behavior
as the execution of the original Dyn program. Formally:

Theorem 1 (Soundness of compilation). Let the infix rela-
tion ⇓ pair a program to its run-time behavior and the infix

relation ≈ be an equivalence relation between behaviors. If

compile p1 = Some 𝑝2, and 𝑝2 ⇓ 𝑏2, and 𝑏2 does not go

wrong, then there exists a behavior 𝑏1 such that 𝑝1 ⇓ 𝑏1 and

𝑏1 ≈ 𝑏2.

Furthermore, compilation is complete for all loadable Dyn
programs.

Theorem 2 (Completness of compilation). If loadDyn 𝑝1 𝑠1,

then there exists a program 𝑝2 and state 𝑠2 such that

compile p1 = Some 𝑝2, and loadInca 𝑝2 𝑠2, and 𝑠1
D-I
∼ 𝑠2.

6 Ubx: Operations on Unboxed Data

TheUbx language adds the concept of manipulating unboxed
data representations to Inca.

6.1 Syntax and Semantics

The syntax of Ubx is a proper superset of Inca’s syntax
(Figure 7).

Values The values manipulated through the operand stack
may either be boxed or unboxed. In principle, any fixed num-
ber of unboxed types may be supported but, Isabelle/HOL
not supporting abstractions over arbitrary numbers of types,
we abstract over two unboxed types (′ubx1 and ′ubx2) and
have to argue without loss of generality.
Because the operand stack may only contain values of a

uniform type, we define the tagged union ubx with three
constructors: UbxDyn represents a boxed value while both
UbxUbx1 and UbxUbx2 represent unboxed values. We extract
a value stored in an ubx by casting it to the desired type.
Casting (i) checks that the ubx value is tagged with the

67

CPP ’21, January 18ś19, 2021, Virtual, Denmark Martin Desharnais and Stefan Brunthaler

ubx ::= UbxDyn ′dyn | boxed dynamic value

UbxUbx1
′ubx1 | unboxed value 1

UbxUbx2
′ubx2 | unboxed value 2

type ::= Ubx1 | Ubx2 unboxed types

instr ::= · · · | instructions from Inca

PushUbx1
′ubx1 | stack manipulation

PushUbx2
′ubx2 | of unboxed data

LoadUbx type ′var | memory manipulation

StoreUbx type ′var | of unboxed data

OpUbx ′opubx unboxed operations

frame ::= Frame ′fun nat ubx∗ stack frame

Figure 7. An excerpt of Ubx’s static syntax and dynamic
state of Ubx.

expected constructor for the given type, and (ii) returns the
unboxed value.

fun castDyn :: ubx ⇒ ′dyn option where

castDyn (UbxDyn 𝑑) = Some 𝑑

castDyn _ = None

The functions castUbx1 and castUbx2 are analog but re-
turn values of type ′ubx1 and ′ubx2 , respectively. Our for-
malization proves that casts are always successful and an
implementation of this optimization would be free to omit.
The boxing and unboxing operations are abstracted over

in the locale unboxedval. Let 𝑑 be a dynamic value and 𝑢 an
unboxed value of type ′ubx1 ,Unbox1 𝑥 = Some𝑢 successfully
extracts the native-machine value 𝑢, and Box1 𝑢 boxes it
back to 𝑑 . Unboxing may fail by evaluating to None when
the provided dynamic value is not of the expected type. The
same holds for ′ubx2 , and extends to any other supported
unboxed type. Formally:

locale unboxedval = dynval +
fixes

Box1 ::
′ubx1 ⇒ ′dyn and

Unbox1 ::
′dyn ⇒ ′ubx1 option and

Box2 ::
′ubx2 ⇒ ′dyn and

Unbox2 ::
′dyn ⇒ ′ubx2 option

assumes

Unbox1 𝑑 = Some 𝑢1 =⇒ Box1 𝑢1 = 𝑑 and

Unbox2 𝑑 = Some 𝑢2 =⇒ Box2 𝑢2 = 𝑑

In order to uniformly manipulate ubx when boxing and
unboxing, we define the type type which has one constructor
per unboxed type, i.e., Ubx1 is associated with

′ubx1 and Ubx2
is associated with ′ubx2 . The generic cast_box function (i)
casts unboxed values, and (ii) immediately boxes them to a
dynamic value.

fun cast_box :: type ⇒ ubx ⇒ ′dyn option where

cast_box Ubx1 = map_option Box1 ◦ castUbx1
cast_box Ubx2 = map_option Box2 ◦ castUbx2

Conversely, the generic function unbox unboxes ′dyn val-
ues to some specified type.

fun unbox :: type ⇒ ′dyn ⇒ ubx option where

unbox Ubx1 = map_option UbxUbx1 ◦ Unbox1
unbox Ubx2 = map_option UbxUbx2 ◦ Unbox2

Finally, a ubx value may be boxed and normalized to ′dyn .

fun norm :: ubx ⇒ ′dyn where

norm (UbxDyn 𝑑) = 𝑑

norm (UbxUbx1 𝑢1) = Box1 𝑢1
norm (UbxUbx2 𝑢2) = Box2 𝑢2

Instructions One new instruction per unboxed type pushes
an unboxed constant onto the operand stack. Two generic
instructions allow loading unboxed values from and storing
them in memory. Finally, one instruction manipulates un-
boxed, native-machine data. The number of new instructions
to support 𝑛 unboxed types is thus 𝑛 + 3.

Operations on unboxed data The built-in operations on
unboxed data are members of the type ′opubx of the locale
nary_operations_ubx. Let 𝑜𝑝𝑢𝑏𝑥 be an operation on unboxed
data and 𝑥𝑠 be a list of values of type ubx, UbxOp 𝑜𝑝𝑢𝑏𝑥 𝑥𝑠

uses some efficient machine-native instructions to operate
directly on the given unboxed arguments. In contrast to
Op and OpInl which, when given the correct number of
arguments, always succeed to calculate a result, OpUbx may
fail by returning None when evaluated on unboxed values
of the wrong type.
An inlined operation (′opinl) is mapped to an operation

on unboxed data (′opubx) with the Ubx function. But instead
of relying on the dynamic type-information extracted from
the actual ′dyn arguments at run time, it relies on statically
known type information. Each argument either has a boxed
type (Some 𝜏 for some 𝜏 :: type), or an unboxed, dynamic
type (None). The mapping is inverted with Ubx−1.

Finally, TypeOf𝑜𝑝𝑢𝑏𝑥 evaluates to the type of the operation
𝑜𝑝𝑢𝑏𝑥 encoded as a pair: the first element is the domain and
the second element is the codomain. The type of an operation
must be compatible with Arity, Ubx, and UbxOp. Formally:

locale nary_operations_ubx =
nary_operations_inl +
unboxedval +

fixes

UbxOp :: ′opubx ⇒ ubx list⇒ ubx option and

Ubx :: ′opinl ⇒ type list⇒ ′opubx option and

Ubx−1 :: ′opubx ⇒ ′opinl and

TypeOf :: ′opubx ⇒ type option list × type option
assumes

Ubx 𝑜𝑝𝑖𝑛𝑙 𝑡𝑠 = Some 𝑜𝑝𝑢𝑏𝑥 =⇒ Ubx−1 𝑜𝑝𝑢𝑏𝑥 = 𝑜𝑝𝑖𝑛𝑙 and

UbxOp 𝑜𝑝𝑢𝑏𝑥 𝑥𝑠 = Some 𝑦 =⇒

68

Towards Efficient and Verified Virtual Machines for Dynamic Languages CPP ’21, January 18ś19, 2021, Virtual, Denmark

InlOp (Ubx−1 𝑜𝑝𝑢𝑏𝑥) (map norm 𝑥𝑠) = norm 𝑦 and

UbxOp 𝑜𝑝𝑢𝑏𝑥 𝑥𝑠 = Some 𝑦 =⇒

Inl (Inl−1 (Ubx−1 𝑜𝑝𝑢𝑏𝑥)) (map norm 𝑥𝑠) =

Some (Ubx−1 𝑜𝑝𝑢𝑏𝑥) and

Arity (Inl−1 (Ubx−1 𝑜𝑝𝑢𝑏𝑥)) = |fst (TypeOf 𝑜𝑝𝑢𝑏𝑥) | and

Ubx 𝑜𝑝𝑖𝑛𝑙 𝑡𝑠 = Some 𝑜𝑝𝑢𝑏𝑥 =⇒

fst (TypeOf 𝑜𝑝𝑢𝑏𝑥) = 𝑡𝑠 and

TypeOf 𝑜𝑝𝑢𝑏𝑥 = (map typeof 𝑥𝑠, 𝜏) =⇒

∃ 𝑥 . UbxOp 𝑜𝑝𝑢𝑏𝑥 𝑥𝑠 = Some 𝑥 ∧ typeof 𝑥 = 𝜏 and

UbxOp 𝑜𝑝𝑢𝑏𝑥 𝑥𝑠 = Some 𝑥 =⇒

TypeOf 𝑜𝑝𝑢𝑏𝑥 = (map typeof 𝑥𝑠, typeof 𝑥)

Semantics We extend Inca’s transition relation to also sup-
port ubx (Figure 8).
All rules to push constants onto the stack now use the

appropriate constructor from ubx.
The rules for loading values from the dynamic memory

distinguish three cases: (i) a dynamic value is loaded and
pushed directly on the operand stack; (ii) a dynamic value
is loaded, successfully unboxed, and pushed on the operand
stack; and (iii) a dynamic value is loaded, the unboxing fails,
and the function is generalized to cancel the Ubx optimiza-
tion. All three rules start by (a) popping a value from the
operand stack, and (b) casting it to a dynamic value, which
is then used to index the dynamic memory.

In rule →Ubx-Load-Ubx-Miss, the unboxing fails because
the dynamic value loaded from memory has a different type
than what was expected when optimizing the program. Sub-
sequent instructions expecting data in their native-machine
representation cannot execute sensibly and must be gen-
eralized to cope with dynamic values. This generalization
process applies to both the function definition and the call
stack.
First, the function generalize generalizes the function

definition by mapping all Ubx instructions to their Inca
counterparts, e.g., PushUbx1 to Push. For OpInl instructions,
Ubx−1 identifies the corresponding ′opinl operation.

Second, we need to update the operand stack to ensure that
all elements use the boxed representation. If a tagged union
contains an operand in unboxed data representation, these
operands would not be accepted by the newly generalized
instructions. To address this, we use the type information
stored in the tagged union to box the object and replace the
element with another tagged union (UbxDyn) representing
this newly boxed object. The operand stack of the current
stack frame must be boxed, but so do the operand stacks of
all other active stack frames of the same function. Because
each stack frame only stores the identifier of the function,
and each execution step retrieves the instruction from the
function definition, all active function invocations will start
to use the generalized instructions. The function box_stack
does this by recursively traversing the call stack and gener-
alizing the operand stack of all stack frame for function 𝑓 ;
all other stack frames are left untouched.

The rules for storing values inmemory all cast the operand
on the top of the stack to the expected type and box it before
storing it in memory. No rules are needed to handle the case
that an unboxed type does not match its expected type. The
bisimulation relation proves that such a situation can never
occur.

The rules for evaluating regular and inlined operations re-
quire minimal adaptation: they must first cast their operands
to dynamic values before evaluation. Again, no rule is re-
quired to handle an invalid cast, as our proof shows that
such situations can never occur. The new rule→Ubx-Op-Ubx

does not need to perform any cast as it operates directly on
unboxed data.

Similarly, the rules for conditional jumps and function call
require minimal adaptation; they now cast their operand to
a dynamic boolean value.
The rules→Ubx-Pop, and→Ubx-Fun-End do not need to

change because they are polymorphic, i.e., they perform
the same operation irrespective of the operand types they
manipulate.

6.2 Bisimulation Inca-Ubx

The validity of a sequence of Ubx instructions can be stati-
cally verified by an abstract interpretation that calculates a
form of strongest postcondition, i.e., the arity and types of
values on the operand stack following the execution of the
sequence. This means that, if a function is given the right
number of boxed arguments, then it will successfully execute
and return values of the computed types. The strongest post-
condition of an instruction takes a stack of types as input
and calculates the stack of types resulting from executing
that instruction.3

Two corresponding program states from Inca and Ubx

simulate each other (expressed by the
I-U
∼ binary relation) if

they have the same dynamic memory, if both their function
environments and call stacks are similar, and if an abstract
interpretation of all function definitions succeeds.
Two function environments are similar if they have the

same domain and if, given a function definition in Ubx and
in Inca, the Ubx function definition generalizes to the Inca
function definition.

Call stacks are similar if (i) they have the same height; (ii)
two corresponding stack frames refer to the same function,
have the same program counters, and Ubx’s operand stack
may be boxed to Inca’s; (iii) the abstract interpretation of the
function up to the current program counter matches with
the operand types in the stack; (iv) the current instruction
of all caller stack frames must be a call instruction to the
callees’ stack frames.

3Note that the simple analysis used in this formalization cannot handle

uses of the CJump instruction and, thus, can only interpret linear functions.

Using a more complete abstract interpretation to enable more interesting

functions is left for future work.

69

CPP ’21, January 18ś19, 2021, Virtual, Denmark Martin Desharnais and Stefan Brunthaler

→Ubx-Push
FunGet 𝐹 𝑓 = Some fd 𝑝𝑐 < |body fd | body fd ! 𝑝𝑐 = Push 𝑑

⟨𝐹, 𝐻, Frame 𝑓 𝑝𝑐 Σ · 𝑠𝑡 ⟩ →Ubx ⟨𝐹, 𝐻, Frame 𝑓 (1 + 𝑝𝑐) (UbxDyn 𝑑 · Σ) · 𝑠𝑡 ⟩

→Ubx-Push-Ubx1
FunGet 𝐹 𝑓 = Some fd 𝑝𝑐 < |body fd | body fd ! 𝑝𝑐 = PushUbx1 𝑢1

⟨𝐹, 𝐻, Frame 𝑓 𝑝𝑐 Σ · 𝑠𝑡 ⟩ →Ubx ⟨𝐹, 𝐻, Frame 𝑓 (1 + 𝑝𝑐) (UbxUbx1 𝑢1 · Σ) · 𝑠𝑡 ⟩

→Ubx-Push-Ubx2
FunGet 𝐹 𝑓 = Some fd 𝑝𝑐 < |body fd | body fd ! 𝑝𝑐 = PushUbx2 𝑢2

⟨𝐹, 𝐻, Frame 𝑓 𝑝𝑐 Σ · 𝑠𝑡 ⟩ →Ubx ⟨𝐹, 𝐻, Frame 𝑓 (1 + 𝑝𝑐) (UbxUbx2 𝑢2 · Σ) · 𝑠𝑡 ⟩

→Ubx-Load
FunGet 𝐹 𝑓 = Some fd 𝑝𝑐 < |body fd | body fd ! 𝑝𝑐 = Load 𝑥 castDyn 𝑢 = Some 𝑑1 MemGet 𝐻 (𝑥,𝑑1) = Some 𝑑2

⟨𝐹, 𝐻, Frame 𝑓 𝑝𝑐 (𝑢 · Σ) · 𝑠𝑡 ⟩ →Ubx ⟨𝐹, 𝐻, Frame 𝑓 (1 + 𝑝𝑐) (UbxDyn 𝑑2 · Σ) · 𝑠𝑡 ⟩

→Ubx-Load-Ubx-Hit

FunGet 𝐹 𝑓 = Some fd 𝑝𝑐 < |body fd | body fd ! 𝑝𝑐 = LoadUbx 𝜏 𝑥

castDyn 𝑢1 = Some 𝑑1 MemGet 𝐻 (𝑥,𝑑1) = Some 𝑑2 unbox 𝜏 𝑑2 = Some 𝑢2

⟨𝐹, 𝐻, Frame 𝑓 𝑝𝑐 (𝑢1 · Σ) · 𝑠𝑡 ⟩ →Ubx ⟨𝐹, 𝐻, Frame 𝑓 (1 + 𝑝𝑐) (𝑢2 · Σ) · 𝑠𝑡 ⟩

→Ubx-Load-Ubx-Miss

FunGet 𝐹 𝑓 = Some fd 𝑝𝑐 < |body fd | body fd ! 𝑝𝑐 = LoadUbx 𝜏 𝑥

castDyn 𝑢1 = Some 𝑑1 MemGet 𝐻 (𝑥,𝑑1) = Some 𝑑2 unbox 𝜏 𝑑2 = None 𝐹 ′ = FunAdd 𝐹 𝑓 (generalize fd)

⟨𝐹, 𝐻, Frame 𝑓 𝑝𝑐 (𝑢1 · Σ) · 𝑠𝑡 ⟩ →Ubx ⟨𝐹 ′, 𝐻, box_stack 𝑓 (Frame 𝑓 (1 + 𝑝𝑐) (UbxDyn 𝑑2 · Σ) · 𝑠𝑡) ⟩

→Ubx-Store

FunGet 𝐹 𝑓 = Some fd 𝑝𝑐 < |body fd | body fd ! 𝑝𝑐 = Store 𝑥

castDyn 𝑢1 = Some 𝑑1 castDyn 𝑢2 = Some 𝑑2 𝐻 ′
= MemAdd 𝐻 (𝑥,𝑑1) 𝑑2

⟨𝐹, 𝐻, Frame 𝑓 𝑝𝑐 (𝑢1 · 𝑢2 · Σ) · 𝑠𝑡 ⟩ →Ubx ⟨𝐹, 𝐻 ′, Frame 𝑓 (1 + 𝑝𝑐) Σ · 𝑠𝑡 ⟩

→Ubx-Store-Ubx

FunGet 𝐹 𝑓 = Some fd 𝑝𝑐 < |body fd | body fd ! 𝑝𝑐 = StoreUbx 𝜏 𝑥

castDyn 𝑢1 = Some 𝑑1 cast_box 𝜏 𝑢2 = Some 𝑑2 𝐻 ′
= MemAdd 𝐻 (𝑥,𝑑1) 𝑑2

⟨𝐹, 𝐻, Frame 𝑓 𝑝𝑐 (𝑢1 · 𝑢2 · Σ) · 𝑠𝑡 ⟩ →Ubx ⟨𝐹, 𝐻 ′, Frame 𝑓 (1 + 𝑝𝑐) Σ · 𝑠𝑡 ⟩

→Ubx-Op

FunGet 𝐹 𝑓 = Some fd 𝑝𝑐 < |body fd | body fd ! 𝑝𝑐 = Op 𝑜𝑝

𝑎𝑟 = Arith 𝑜𝑝 𝑎𝑟 ≤ |Σ | traverse castDyn (take 𝑎𝑟 Σ) = Some Σ
′ Inl 𝑜𝑝 Σ

′
= None Op 𝑜𝑝 Σ

′
= 𝑑

⟨𝐹, 𝐻, Frame 𝑓 𝑝𝑐 Σ · 𝑠𝑡 ⟩ →Ubx ⟨𝐹, 𝐻, Frame 𝑓 (1 + 𝑝𝑐) (UbxDyn 𝑑 · drop 𝑎𝑟 Σ) · 𝑠𝑡 ⟩

→Ubx-Op-Inl

FunGet 𝐹 𝑓 = Some fd 𝑝𝑐 < |body fd | body fd ! 𝑝𝑐 = Op 𝑜𝑝

𝑎𝑟 = Arith 𝑜𝑝 𝑎𝑟 ≤ |Σ | traverse castDyn (take 𝑎𝑟 Σ) = Some Σ
′ Inl 𝑜𝑝 Σ

′
= Some 𝑜𝑝𝑖𝑛𝑙 InlOp 𝑜𝑝𝑖𝑛𝑙 Σ

′
= 𝑑

𝐹 ′ = FunAdd 𝐹 𝑓 (rewrite fd 𝑝𝑐 (OpInl 𝑜𝑝𝑖𝑛𝑙))

⟨𝐹, 𝐻, Frame 𝑓 𝑝𝑐 Σ · 𝑠𝑡 ⟩ →Ubx ⟨𝐹 ′, 𝐻, Frame 𝑓 (1 + 𝑝𝑐) (UbxDyn 𝑑 · drop 𝑎𝑟 Σ) · 𝑠𝑡 ⟩

→Ubx-Op-Inl-Hit

FunGet 𝐹 𝑓 = Some fd 𝑝𝑐 < |body fd | body fd ! 𝑝𝑐 = OpInl 𝑜𝑝𝑖𝑛𝑙
𝑜𝑝 = Inl−1 𝑜𝑝𝑖𝑛𝑙 𝑎𝑟 = Arith 𝑜𝑝 𝑎𝑟 ≤ |Σ | traverse castDyn (take 𝑎𝑟 Σ) = Some Σ

′

IsInl 𝑜𝑝𝑖𝑛𝑙 Σ
′ InlOp 𝑜𝑝𝑖𝑛𝑙 Σ

′
= 𝑑

⟨𝐹, 𝐻, Frame 𝑓 𝑝𝑐 Σ · 𝑠𝑡 ⟩ →Ubx ⟨𝐹, 𝐻, Frame 𝑓 (1 + 𝑝𝑐) (UbxDyn 𝑑 · drop 𝑎𝑟 Σ) · 𝑠𝑡 ⟩

→Ubx-Op-Inl-Miss

FunGet 𝐹 𝑓 = Some fd 𝑝𝑐 < |body fd | body fd ! 𝑝𝑐 = OpInl 𝑜𝑝𝑖𝑛𝑙
𝑜𝑝 = Inl−1 𝑜𝑝𝑖𝑛𝑙 𝑎𝑟 = Arith 𝑜𝑝 𝑎𝑟 ≤ |Σ | traverse castDyn (take 𝑎𝑟 Σ) = Some Σ

′

¬ IsInl 𝑜𝑝𝑖𝑛𝑙 Σ
′ InlOp 𝑜𝑝𝑖𝑛𝑙 Σ

′
= 𝑑 𝐹 ′ = FunAdd 𝐹 𝑓 (rewrite fd 𝑝𝑐 (Op 𝑜𝑝))

⟨𝐹, 𝐻, Frame 𝑓 𝑝𝑐 Σ · 𝑠𝑡 ⟩ →Ubx ⟨𝐹 ′, 𝐻, Frame 𝑓 (1 + 𝑝𝑐) (UbxDyn 𝑑 · drop 𝑎𝑟 Σ) · 𝑠𝑡 ⟩

→Ubx-Op-Ubx

FunGet 𝐹 𝑓 = Some fd 𝑝𝑐 < |body fd | body fd ! 𝑝𝑐 = OpUbx 𝑜𝑝𝑢𝑏𝑥
𝑜𝑝 = Inl−1 (Ubx−1 𝑜𝑝𝑢𝑏𝑥) 𝑎𝑟 = Arith 𝑜𝑝 𝑎𝑟 ≤ |Σ | UbxOp 𝑜𝑝𝑢𝑏𝑥 (take 𝑎𝑟 Σ) = Some 𝑢

⟨𝐹, 𝐻, Frame 𝑓 𝑝𝑐 Σ · 𝑠𝑡 ⟩ →Ubx ⟨𝐹, 𝐻, Frame 𝑓 (1 + 𝑝𝑐) (𝑢 · drop 𝑎𝑟 Σ) · 𝑠𝑡 ⟩

→Ubx-CJump-True
FunGet 𝐹 𝑓 = Some fd 𝑝𝑐 < |body fd | body fd ! 𝑝𝑐 = CJump 𝑛 castDyn 𝑢 = Some 𝑑 IsTrue 𝑑

⟨𝐹, 𝐻, Frame 𝑓 𝑝𝑐 𝑢 · Σ · 𝑠𝑡 ⟩ →Ubx ⟨𝐹, 𝐻, Frame 𝑓 𝑛 Σ · 𝑠𝑡 ⟩

→Ubx-CJump-False
FunGet 𝐹 𝑓 = Some fd 𝑝𝑐 < |body fd | body fd ! 𝑝𝑐 = CJump 𝑛 castDyn 𝑢 = Some 𝑑 IsFalse 𝑑

⟨𝐹, 𝐻, Frame 𝑓 𝑝𝑐 𝑢 · Σ · 𝑠𝑡 ⟩ →Ubx ⟨𝐹, 𝐻, Frame 𝑓 1 + 𝑝𝑐 Σ · 𝑠𝑡 ⟩

→Ubx-Fun-Call

FunGet 𝐹 𝑓 = Some fd 𝑝𝑐 < |body fd | body fd ! 𝑝𝑐 = Call 𝑔

FunGet 𝐹 𝑔 = Some 𝑔𝑑 𝑎𝑟 = Arity 𝑔𝑑 𝑎𝑟 ≤ |Σ | list_all (𝜆𝑢. typeof 𝑢 = None) (take 𝑎𝑟 Σ)

⟨𝐹, 𝐻, Frame 𝑓 𝑝𝑐 Σ · 𝑠𝑡 ⟩ →Ubx ⟨𝐹, 𝐻, Frame 𝑔 0 (take 𝑎𝑟 Σ) · Frame 𝑓 𝑝𝑐 Σ · 𝑠𝑡 ⟩

Figure 8. The subset of the (→Ubx) transition relation that differs from (→Inca).

70

Towards Efficient and Verified Virtual Machines for Dynamic Languages CPP ’21, January 18ś19, 2021, Virtual, Denmark

We proved that
I-U
∼ is a bisimulation.

Lemma 6 (Forward simulation). If 𝑠1 →Inca 𝑠 ′
1
and

𝑠1
I-U
∼ 𝑠2, then there exists a state 𝑠 ′

2
such that 𝑠2 →Ubx 𝑠 ′

2

and 𝑠 ′
1

I-U
∼ 𝑠 ′

2
.

Lemma 7 (Forward matching final states). If 𝑠1
I-U
∼ 𝑠2 and

finalInca 𝑠1, then finalUbx 𝑠2.

Lemma 8 (Backward simulation). If 𝑠2 →Ubx 𝑠 ′
2
and

𝑠1
I-U
∼ 𝑠2, then there exists a state 𝑠 ′

1
such that 𝑠1 →Inca 𝑠 ′

1

and 𝑠 ′
1

I-U
∼ 𝑠 ′

2
.

Lemma 9 (Backward matching final states). If 𝑠1
I-U
∼ 𝑠2 and

finalUbx 𝑠2, then finalInca 𝑠1.

6.3 Compilation from Inca to Ubx

The process of compiling has three steps.

1. Lift the program from Inca to Ubx.
2. Optimize the program by using as many Ubx instruc-

tions as possible.
3. Ensure that the result is valid with respect to the ab-

stract interpretation.

The optimization pass is based on an oracleÐan abstract
function of type ′fun ⇒ nat ⇒ type optionÐwhich, given
the position of a Load instruction in a function, evaluates to
the expected unboxed type of the loaded value. A variant of
the abstract interpretation used for the simulation relation
optimizes instructions in a linear pass based on the following
type information.

1. All function parameters have boxed dynamic types.
2. The type produced by Push is provided by inspecting

the constant.
3. The type produced by Load is provided by the oracle,

or assumed to be a boxed dynamic type if the oracle
evaluates to None.

4. The type consumed by Store is obtained from the
abstract interpretation.

5. The types consumed and produced by Op, OpInl, and
Call are always boxed dynamic and their number
depends on the arity of the operation or function.

6. The types consumed and produced by OpUbx is ob-
tained from TypeOf.

This information provided by the oracle could either be
given directly by the programmer or be the result of au-
tomatic run-time instrumentation. In the second case, the
virtual machine would first execute code in Inca mode and
gather some statistics on encountered types, a stage usually
referred to as profiling. When some heuristics indicate that
a point of łdynamic locality of type usagež is reached, the
program would then be compiled to Ubx, and the control
flow diverted to Ubx’s execution engine.
The accuracy of the oracle’s predictions may increase

or decrease run-time performance, but may never alter the

semantics of the executed program. If a value loaded from
memory does not match the oracle’s prediction, rule→Ubx-

Load-Ubx-Miss generalizes the function back to cope with
boxed values before resuming the execution.
We proved that compiled, optimized programs simulate

their uncompiled counterparts.

Lemma 10 (Compiled matching states). If compile 𝑝1 =

Some 𝑝2 and loadInca 𝑝1 𝑠1, then there exists a state 𝑠2 such

that loadUbx 𝑝2 𝑠2 and 𝑠1
I-U
∼ 𝑠2.

Lemmas 6 to 10 imply that the successful execution of
a compiled Ubx program exhibits identical behavior to the
execution of the original Inca program. Formally:

Theorem 3 (Soundness of compilation). Let the infix rela-
tion ⇓ pair a program to its run-time behavior and the infix

relation ≈ be an equivalence relation between behaviors. If

compile p1 = Some 𝑝2, and 𝑝2 ⇓ 𝑏2, and 𝑏2 does not go

wrong, then there exists a behavior 𝑏1 such that 𝑝1 ⇓ 𝑏1 and

𝑏1 ≈ 𝑏2.

Compilation from Inca to Ubx is incomplete in the sense
of Theorem 2 because (i) the abstract interpretation and
optimization algorithm are too simplistic to handle jumps,
and (ii) the hypothesis is too weak.
The former issue can be addressed by using a more so-

phisticated data-flow analysis instead of our one-pass linear
analysis. The latter issue is that the process of loading does
not guarantee a successful executions. To address this is-
sue and prove completeness, the hypothesis needs to be
strengthened, for example, by giving a typing judgment that
guarantees a valid execution of the initial program.

7 Practical Perspective

A Brief History The original idea on how to optimize dyna-
mically-typed programming languages with advanced type
specialization in a purely interpretative setting is about ten
years old by now. The senior author implemented a full-
fledged prototype in CPython 3.3, reporting speedups by
a factor of up to 5. At the same time, the prototype re-
tained traditional interpreter benefits: simplicity and ease-of-
implementation. Papers were submitted to ACM SIGPLAN
PLDI 2013, SIGPLAN PLDI 2014, and ACM Transactions on
Architecture and Code Optimization 2014, with usually pos-
itive feedback but no PC member championing the paper.
Due to the important speedups enabled by the prototype, a
series of talks were given in 2012: TUWien, Universität Linz,
IST Austria, and a talk at Mozilla.

Benefits of Formalization The full-fledged CPython pro-
totype successfully passed all relevant unit tests and ran
major Python applications, benchmarks, and frameworks.
Although tests covered several ten thousands lines of Python

71

CPP ’21, January 18ś19, 2021, Virtual, Denmark Martin Desharnais and Stefan Brunthaler

programs and C code for libraries, some łHeisenbugsž oc-
curred every now and then. Through the presented formal-
ization, we were able to discern a new requirement that
addressed the bug.
The new requirementÐobvious in hindsight, but non-

obvious beforeÐis due to the deoptimization of Ubx opti-
mized code. When deoptimizing a certain function f, a prior,
yet incomplete call to function f may still be active on stack.
Assume the prior stack frame of f was type-specialized to
a specific type 𝑇 and that the operand stack of the inter-
preter stack frame contained unboxed data of type 𝑇 . If we
deoptimize the newer stack frame of the present function
invocation of f, then all unboxed data will be boxed again
and stored in memory. Now, assume that during a following
call of function f, it will be optimized again, but to a different
type𝑇 ′. The program continues, until it eventually continues
to operate on the prior stack frame belonging to function f.
The interpreter operand stack may now hold unboxed data
of type 𝑇 , but the optimized instructions will assume the
data to be of type𝑇 ′. Potential errors following from this sit-
uation are: (i) deoptimization may fail when the types 𝑇 and
𝑇 ′ differ; (ii) execution of native-machine operations may
fail, when the data representation differs; (iii) (un-)boxing
of data may fail, when we try to access native-machine data
incorrectly.
The underlying problem is that there is only one opti-

mized interpreter code image stored for each interpreted
function. A Ubx function is, therefore, not able to infer po-
tential changes to its code. A variety of techniques address
this issue, e.g., deoptimizing all invocations of the optimized
code, or keeping a version counter of the code image and
check, that these are identical.

Evaluation Results Table 1 presents speedup factors rel-
ative to a baseline interpreter: CPython 3.3.2 using switch-
dispatch for instruction dispatch. The PyPy3 measurements
correspond to the then (2014) most recent version: 2.1 beta
1. At present, PyPy3 is out of beta and offers a better perfor-
mance profile and better compatibility with C extensions.
We evaluated our full-fledged implementation using the

following benchmarks. First, we use the following micro-
benchmarks from the computer language benchmarks game
[15]: binarytrees,mandelbrot, nbody, and spectralnorm. Sec-
ond, we used a set of publicly available solutions to the first
50 Project Euler problems [1], where we selected programs
that show a longer than average run-time (solutions to prob-
lems no. 27, 31, 39, and 50).
The benchmarks were run on an Intel Nehalem i7-920

running at a frequency of 2.67 GHz, on Linux kernel version
3.11.0-15 and gcc version 4.6.4. To minimize perturbations
by third party systems, we took the following precautions.
First, we disabled Intel’s TurboBoost [25] feature to avoid
frequency scaling based on unknown heuristics. Second, we
used nice -n -20 to minimize operating system scheduler

Table 1. Speedups of PyPy3 and Ubx-Prototype over the
CPython baseline.

Benchmark PyPy3 Ubx-Prototype

binarytrees 1.8225× 1.7081×
mandelbrot 0.9403× 2.0986×
nbody 1.5112× 3.7010×
spectralnorm 2.7900× 4.4012×

E27 3.8519× 2.3084×
E31 0.1460× 1.1393×
E39 1.9461× 4.9297×
E50 3.6531× 3.8018×

Geometric Mean 1.6984× 2.5367×

effects. Third, we used 30 repetitions for each pairing of
a benchmark with an interpreter to get stable results; we
report the geometric mean of these repetitions, to account
for outliers.

8 Related Work

To the best of our knowledge, there exists no prior work that
is directly related to the formalization and verification of
the speculative optimizations presented here. We therefore
group the related work into the three most directly related
groups of related work: (i) formalization and verification of
translators, (ii) formalization and verification of dynamic
languages, and (iii) just-in-time compiler optimizations.

8.1 Formalization and Verification of Translators

We combine the related work on compilers, just-in-time com-
pilers, and interpreters and subsume all of them under the
label łtranslators.ž From a history perspective, the correct-
ness of translators has been an active research area since at
least the 1980s. The topic of compiler correctness has, for
instance, been examined in the European FP2 research pro-
gram ProCoS [22]. The findings of ProCoS subsequently lead
to a larger German research project called Verifix, which
examined several aspects of compiler correctness [16, 17].
In the 2000s, a group of researchers in France pioneered the
field by mechanizing correctness of an industrial-strength
C compiler [5, 30, 38, 42ś44]. In the 2010s, a mechanized
formalization and verification of ML followed [28].
In 2006, Klein and Nipkow formalized Jinja, a unified

model of a Java-like source language, virtual machine, and
compiler [26, 27]. Lochbihler later added support for inter-
leaved execution of threads with JinjaThreads [31ś35]. In
2018, Watt mechanized the WebAssembly specification [46,
47].

In a similar vein, the verification of compile-time optimiza-
tions has received considerable attention from the research

72

Towards Efficient and Verified Virtual Machines for Dynamic Languages CPP ’21, January 18ś19, 2021, Virtual, Denmark

community. VellVM, for example, focused on verifying op-
timizations on the LLVM bitcode intermediate representa-
tion [52]. Tatlock and Lerner simplify the verification of
optimizations in verified compilers by using SMT solvers
to aid with the construction of verified translation valida-
tors [41] Prior research also focused on the formalization
verification of intermediate representations, such as Java
bytecode, without optimizations [29, 40].
In 2010, Myreen presents his work on the formalization

and verification of just-in-time compilers [36], documenting
some of the difficulties posed by self-modifying code. This
paper is most directly related prior work, but addresses a
different direction, namely, the formalization of just-in-time
compilers. Our work, however, sidesteps the intricate difficul-
ties of JIT compilers by focusing on optimizing interpreters
instead. In 2017, Flückiger et al. investigate the correctness of
speculative optimizations with dynamic deoptimiziation [14].
Since our virtual machine interpreters can be thought of as
intermediate representations, the Inca language confirms
the finding by Flückiger et al., namely, that reasoning about
complex system interactions is a lot easier by embedding the
proper information in it. However, Ubx goes further than
Flückiger et al. by covering different data representation.

8.2 Formalization and Verification of Dynamic

Languages

The formalization of dynamic languages in general, and Java-
Script in particular, has been the subject of substantial prior
work. In 2010, 𝜆𝐽 𝑆 presented the first executable, formal se-
mantics of JavaScript [21]. By rewriting JavaScript surface
syntax into equivalent Scheme code, JavaScript programs
could be executed, with correctness and security guarantees
depending on the underlying Scheme system. In 2013, 𝜆𝜋
applied a similar technique to provide a formal semantics
for Python [37]. A comprehensive formalization and verifica-
tion effort of JavaScript is the Coq-based project JSCert [6].
JSCert generates a verified JavaScript interpreter from its
formalization.

While a formal semantics is an indispensable prerequisite
for a correct and verified virtual machine, it addresses the
desirable performance aspect insufficiently. To attain per-
formance, a formalization of speculative optimizations is
required, which is the key contribution of our paper.

8.3 Just-in-Time Compilers & Interpreters

Aycock gives a good overview of the history of just-in-time
compilers up until the early 2000s [2]. Particularly relevant
prior work is the original work by Deutsch and Schiffman,
which introduced the seminal idea of inline caching [12].
Originally, their work on Smalltalk 80 systems considered
so-called monomorphic inline caches, i.e., inline caches that
hold at most one address. Hölzle, Chambers and Ungar sub-
sequently extended these with so-called polymorphic inline
caches, i.e., a combination of an inline cache and a stub to

cache multiple target addresses, which is particularly rele-
vant in highly polymorphic call sites [23, 24].

In 1996, Roemer et al. studied the performance of inter-
preters and found no specific evidence to identify hints [39].
In 2003, Ertl and Gregg investigated the performance of in-
terpreters again and found evidence of the importance of
branch predictors [13]. In 2009, Brunthaler analyzed the vary-
ing performance potential of interpreter optimizations and
found that the interpreter abstraction level is the primary
performance determinant for selecting interpreter optimiza-
tions [7]. In 2010, Brunthaler investigated the use of inline
caching in a purely interpretative fashion, in contrast to its
use in just-in-time compilers, and found speedups by a factor
of up to 2 [8, 9]. In 2012,Würthinger generalized Brunthaler’s
bytecode interpreter optimizations to abstract-syntax tree in-
terpreters [50], which subsequently became the cornerstone
for the development of the Truffle/Graal virtual machine
implementation efforts [48, 49]. In 2014, Wang et al. demon-
strated the potential of combining advanced optimizations
in the R programming language and reported speedups of
up to 3.5 [45].
All prior work in this area reports important speedups,

either through dynamic code generation in a classic just-in-
time compiler setting, or by way of optimizing interpreters.
The exclusive focus of prior work is on improving perfor-
mance, or sometimes also reducing memory footprint. The
aspect of formalization and verification, in particular to es-
tablish correctness, is notably absent.

9 Conclusion

We presented a formalization of virtual machine interpreters
for dynamically typed programming languages. Our formal-
ization define an interpreter supporting the most represen-
tative features found and used by many virtual machine
interpreters for mainstream languages. We then methodi-
cally extend the virtual machine interpreter’s instruction
set and semantics to accommodate increasingly specialized
and optimized instruction derivatives. These incrementally
specialized derivatives eliminate much of the overhead fre-
quently found in high abstraction-level virtual machines,
such as those used by Python or JavaScript.
The optimized instruction derivatives, in particular, first

eliminate the overhead of dynamic typing by inline caching
a prior recorded type at its place. This recorded type infor-
mation is subsequently used to expand the local knowledge
of type usage in a specific region of the program, e.g., a loop,
or a basic block. Once a suitable region of known types is
determined, we can rewrite the whole sequence to eliminate
the overhead of using boxed objects by using native-machine
data representation instead.
Our formalization enables the proof of both, soundness

and completeness, for speculative optimizations. Given a

73

CPP ’21, January 18ś19, 2021, Virtual, Denmark Martin Desharnais and Stefan Brunthaler

formal semantics of a dynamic language, and a suitable in-
termediate representation, our formalization provides a sys-
tematic way to (i) integrate speculative optimizations, and
(ii) establish the correctness of the resulting system. We be-
lieve that our formalization provides a foundation for the
verification of industrial-strength implementations. These
implementations will benefit from our formalization’s ability
to pinpoint subtle errors and non-obvious requirements.

Acknowledgments

The authors thank Jasmin Blanchette and Johannes Kinder
for invaluable feedback on earlier versions of this paper. This
publication is part of the project Concordia, a project that
has received funding from the European Union’s Horizon
2020 research and innovation program under grant agree-
ment No 830927.

References
[1] S. Anand. 2011. Project Euler Solutions. Retrieved February 18th,

2014 from http://www.s-anand.net/euler.html

[2] John Aycock. 2003. A brief history of just-in-time. Comput. Surveys

35, 2 (2003), 97ś113. https://doi.org/10.1145/857076.857077

[3] Scott B Baden. 1982. High Performance Storage Reclamation in an Object-

Based Memory System. Technical Report. University of California,

Berkeley, Berkeley, CA, USA.

[4] Clemens Ballarin. 2014. Locales: A Module System for Mathematical

Theories. Journal of Automated Reasoning 52, 2 (01 Feb 2014), 123ś153.

https://doi.org/10.1007/s10817-013-9284-7

[5] Sandrine Blazy, Zaynah Dargaye, and Xavier Leroy. 2006. Formal

Verification of a C Compiler Front-End. 460ś475. https://doi.org/10.

1007/11813040_31

[6] Martin Bodin, Arthur Chargueraud, Daniele Filaretti, Philippa Gard-

ner, Sergio Maffeis, Daiva Naudziuniene, Alan Schmitt, and Gareth

Smith. 2014. A Trusted Mechanised JavaScript Specification. In Pro-

ceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Princi-

ples of Programming Languages (San Diego, California, USA). As-

sociation for Computing Machinery, New York, NY, USA, 87ś100.

https://doi.org/10.1145/2535838.2535876

[7] Stefan Brunthaler. 2009. Virtual-Machine Abstraction and Optimiza-

tion Techniques. Electronic Notes in Theoretical Computer Science 253,

5 (2009), 3ś14.

[8] Stefan Brunthaler. 2010. Efficient interpretation using quickening.

[9] Stefan Brunthaler. 2010. Inline caching meets quickening. In Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), Vol. 6183 LNCS. 429ś

451.

[10] Martin Desharnais. 2020. A Generic Framework for Verified Compil-

ers. Archive of Formal Proofs (Feb. 2020). https://isa-afp.org/entries/

VeriComp.html, Formal proof development.

[11] Martin Desharnais. 2020. Inline Caching and Unboxing Optimization

for Interpreters. Archive of Formal Proofs (Dec. 2020). https://isa-

afp.org/entries/Interpreter_Optimizations.html, Formal proof devel-

opment.

[12] L Peter Deutsch and AllanM Schiffman. 1984. Efficient implementation

of the smalltalk-80 system. In Proceedings of the 11th ACM SIGACT-

SIGPLAN symposium on Principles of programming languages - POPL

’84. ACM Press, New York, New York, USA, 297ś302. https://doi.org/

10.1145/800017.800542

[13] M Anton Ertl and David Gregg. 2003. The Structure and Performance

of Efficient Interpreters. Journal of Instruction-Level Parallelism 5 (nov

2003), 1ś25.

[14] Olivier Flückiger, Gabriel Scherer, Ming-Ho Yee, Aviral Goel, Amal

Ahmed, and Jan Vitek. 2017. Correctness of Speculative Optimizations

with Dynamic Deoptimization. Proc. ACM Program. Lang. 2, POPL,

Article 49 (Dec. 2017), 28 pages. https://doi.org/10.1145/3158137

[15] Brent Fulgham. 2013. The Computer Language Benchmarks Game.

Retrieved April 25th, 2013 from http://shootout.alioth.debian.org/

[16] Sabine Glesner, G. Goos, F. v. Henke, H. Langmaack, W. Goerigk, and

W. Zimmermann. 2004. Abschlussbericht Verifix. Technical Report.

Universitäten Karlsruhe, Kiel, Ulm.

[17] Gerhard Goos and Wolf Zimmermann. 1999. Verification of Compilers.

In Correct System Design: Recent Insights and Advances. Lecture Notes

in Computer Science, Vol. 1710. 201ś230. https://doi.org/10.1007/3-

540-48092-7_10

[18] Samuel Groß. 2020. JITSploitation I: A JIT Bug. https://

googleprojectzero.blogspot.com/2020/09/jitsploitation-one.html Ac-

cessed: 2020-09-21.

[19] Samuel Groß. 2020. JITSploitation II: Getting Read/Write. https:

//googleprojectzero.blogspot.com/2020/09/jitsploitation-two.html Ac-

cessed: 2020-09-21.

[20] Samuel Groß. 2020. JITSploitation III: Subverting Control Flow. https://

googleprojectzero.blogspot.com/2020/09/jitsploitation-three.html Ac-

cessed: 2020-09-21.

[21] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The

Essence of JavaScript. 126ś150. https://doi.org/10.1007/978-3-642-

14107-2_7

[22] Michael G. Hinchey, Jonathan P. Bowen, and Ernst-Rüdiger Olderog

(Eds.). 2017. Provably Correct Systems. Springer. https://doi.org/10.

1007/978-3-319-48628-4

[23] Urs Hölzle, Craig Chambers, and David M Ungar. 1991. Optimiz-

ing Dynamically-Typed Object-Oriented Languages With Polymor-

phic Inline Caches. In Proceedings of the 5th European Conference

on Object-Oriented Programming, Geneva, Switzerland, July 15-19,

1991 (ECOOP∼’91) (Lecture Notes in Computer Science, Vol. 512/1991).

Springer-Verlag, 21ś38.

[24] Urs Hölzle and David Ungar. 1994. Optimizing dynamically-dispatched

calls with run-time type feedback. In Proceedings of the ACM SIGPLAN

1994 conference on Programming language design and implementation

- PLDI ’94. ACM Press, New York, New York, USA, 326ś336. https:

//doi.org/10.1145/178243.178478

[25] Intel. 2012. Intel Turbo Boost Technology ś On-Demand

Processor Performance. Retrieved April 25th, 2013 from

http://www.intel.com/content/www/us/en/architecture-and-

technology/turbo-boost/turbo-boost-technology.html

[26] Gerwin Klein and Tobias Nipkow. 2005. Jinja is not Java. Archive

of Formal Proofs (June 2005). https://isa-afp.org/entries/Jinja.html,

Formal proof development.

[27] Gerwin Klein and Tobias Nipkow. 2006. A Machine-Checked Model

for a Java-like Language, Virtual Machine, and Compiler. ACM Trans.

Program. Lang. Syst. 28, 4 (July 2006), 619ś695. https://doi.org/10.

1145/1146809.1146811

[28] Ramana Kumar, MO Myreen, Michael Norrish, and Scott Owens. 2014.

CakeML: A verified implementation of ML. Proceedings of the 41st ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages

1, Section 3 (2014), 179ś191. https://doi.org/10.1145/2535838.2535841

[29] Xavier Leroy. 2003. Java Bytecode Verification: Algorithms and For-

malizations. Journal of Automated Reasoning 30, 3/4 (2003), 235ś269.

https://doi.org/10.1023/A:1025055424017

[30] Xavier Leroy. 2009. A Formally Verified Compiler Back-end. Journal

of Automated Reasoning 43, 4 (dec 2009), 363ś446. https://doi.org/10.

1007/s10817-009-9155-4

[31] Andreas Lochbihler. 2007. Jinja with Threads. Archive of Formal Proofs

(Dec. 2007). https://isa-afp.org/entries/JinjaThreads.html, Formal

proof development.

74

http://www.s-anand.net/euler.html
https://doi.org/10.1145/857076.857077
https://doi.org/10.1007/s10817-013-9284-7
https://doi.org/10.1007/11813040_31
https://doi.org/10.1007/11813040_31
https://doi.org/10.1145/2535838.2535876
https://isa-afp.org/entries/VeriComp.html
https://isa-afp.org/entries/VeriComp.html
https://isa-afp.org/entries/Interpreter_Optimizations.html
https://isa-afp.org/entries/Interpreter_Optimizations.html
https://doi.org/10.1145/800017.800542
https://doi.org/10.1145/800017.800542
https://doi.org/10.1145/3158137
http://shootout.alioth.debian.org/
https://doi.org/10.1007/3-540-48092-7_10
https://doi.org/10.1007/3-540-48092-7_10
https://googleprojectzero.blogspot.com/2020/09/jitsploitation-one.html
https://googleprojectzero.blogspot.com/2020/09/jitsploitation-one.html
https://googleprojectzero.blogspot.com/2020/09/jitsploitation-two.html
https://googleprojectzero.blogspot.com/2020/09/jitsploitation-two.html
https://googleprojectzero.blogspot.com/2020/09/jitsploitation-three.html
https://googleprojectzero.blogspot.com/2020/09/jitsploitation-three.html
https://doi.org/10.1007/978-3-642-14107-2_7
https://doi.org/10.1007/978-3-642-14107-2_7
https://doi.org/10.1007/978-3-319-48628-4
https://doi.org/10.1007/978-3-319-48628-4
https://doi.org/10.1145/178243.178478
https://doi.org/10.1145/178243.178478
http://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
https://isa-afp.org/entries/Jinja.html
https://doi.org/10.1145/1146809.1146811
https://doi.org/10.1145/1146809.1146811
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1023/A:1025055424017
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1007/s10817-009-9155-4
https://isa-afp.org/entries/JinjaThreads.html

Towards Efficient and Verified Virtual Machines for Dynamic Languages CPP ’21, January 18ś19, 2021, Virtual, Denmark

[32] Andreas Lochbihler. 2008. Type Safe Nondeterminism - A Formal

Semantics of Java Threads. In International Workshop on Foundations

of Object-Oriented Languages (FOOL 2008). http://www.infsec.ethz.ch/

people/andreloc/publications/lochbihler08fool.pdf

[33] Andreas Lochbihler. 2010. Verifying a Compiler for Java Threads. In

European Symposium on Programming (ESOP’10) (LNCS, Vol. 6012),

A. D. Gordon (Ed.). Springer, 427ś447. https://doi.org/10.1007/978-3-

642-11957-6_23

[34] Andreas Lochbihler. 2012. Java and the Java Memory Model ś a

Unified, Machine-Checked Formalisation. In Programming Languages

and Systems (LNCS, Vol. 7211), Helmut Seidl (Ed.). Springer, 497ś517.

https://doi.org/10.1007/978-3-642-28869-2_25

[35] Andreas Lochbihler and Lukas Bulwahn. 2011. Animating the For-

malised Semantics of a Java-like Language. In Interactive Theorem

Proving (LNCS, Vol. 6898), Marko van Eekelen, Herman Geuvers,

Julien Schmalz, and Freek Wiedijk (Eds.). Springer, 216ś232. https:

//doi.org/10.1007/978-3-642-22863-6_17

[36] Magnus O Myreen. 2010. Verified just-in-time compiler on x86. In

Proceedings of the 37th annual ACM SIGPLAN-SIGACT symposium on

Principles of programming languages - POPL ’10. ACM Press, New York,

New York, USA, 107. https://doi.org/10.1145/1706299.1706313

[37] Joe Gibbs Politz, Alejandro Martinez, Matthew Milano, Sumner War-

ren, Daniel Patterson, Junsong Li, Anand Chitipothu, and Shriram

Krishnamurthi. 2013. Python: The Full Monty. In Proceedings of the

2013 ACM SIGPLAN International Conference on Object Oriented Pro-

gramming Systems Languages & Applications (Indianapolis, Indiana,

USA) (OOPSLA ’13). Association for Computing Machinery, New York,

NY, USA, 217ś232. https://doi.org/10.1145/2509136.2509536

[38] Silvain Rideau and Xavier Leroy. 2010. Validating Register Allocation

and Spilling. 224ś243. https://doi.org/10.1007/978-3-642-11970-5_13

[39] Theodore H Romer, Dennis Lee, Geoffrey M Voelker, Alec Wolman,

Wayne A Wong, Jean-Loup Baer, Brian N Bershad, and Henry M Levy.

1996. The structure and performance of interpreters. In Asplos. ACM

Press, 150ś159.

[40] Robert F. Stärk, Joachim Schmid, and Egon Börger. 2001. Java and the

Java Virtual Machine: Definition, Verification, Validation. Springer.

[41] Zachary Tatlock and Sorin Lerner. 2010. Bringing Extensibility to

Verified Compilers. In ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI), Vol. 45. 111ś121. https:

//doi.org/10.1145/1809028.1806611

[42] Jean-Baptiste Tristan and Xavier Leroy. 2008. Formal verification of

translation validators. In Proceedings of the 35th annual ACM SIGPLAN-

SIGACT symposium on Principles of programming languages - POPL ’08.

ACM Press, New York, New York, USA, 17. https://doi.org/10.1145/

1328438.1328444

[43] Jean-Baptiste Tristan and Xavier Leroy. 2009. Verified validation of

lazy code motion. 316ś326. https://doi.org/10.1145/1542476.1542512

[44] Jean-Baptiste Tristan and Xavier Leroy. 2010. A simple, verified

validator for software pipelining. In Proceedings of the 37th annual

ACM SIGPLAN-SIGACT symposium on Principles of programming

languages - POPL ’10. ACM Press, New York, New York, USA, 83.

https://doi.org/10.1145/1706299.1706311

[45] Haichuan Wang, Peng Wu, and David Padua. 2014. Optimizing R

VM: Allocation Removal and Path Length Reduction via Interpreter-

Level Specialization. In Proceedings of Annual IEEE/ACM International

Symposium on Code Generation and Optimization (Orlando, FL, USA)

(CGO ’14). Association for Computing Machinery, New York, NY, USA,

295ś305. https://doi.org/10.1145/2544137.2544153

[46] Conrad Watt. 2018. Mechanising and Verifying the WebAssembly

Specification. In Proceedings of the 7th ACM SIGPLAN International

Conference on Certified Programs and Proofs (Los Angeles, CA, USA)

(CPP 2018). Association for Computing Machinery, New York, NY, USA,

53ś65. https://doi.org/10.1145/3167082
[47] Conrad Watt. 2018. WebAssembly. Archive of Formal Proofs (April

2018). https://isa-afp.org/entries/WebAssembly.html, Formal proof

development.

[48] Thomas Würthinger, Christian Wimmer, Christian Humer, Andreas

Wöß, Lukas Stadler, Chris Seaton, Gilles Duboscq, Doug Simon,

and Matthias Grimmer. 2017. Practical Partial Evaluation for High-

Performance Dynamic Language Runtimes. In Proceedings of the 38th

ACM SIGPLANConference on Programming Language Design and Imple-

mentation (Barcelona, Spain) (PLDI 2017). Association for Computing

Machinery, New York, NY, USA, 662ś676. https://doi.org/10.1145/

3062341.3062381

[49] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler,

Gilles Duboscq, Christian Humer, Gregor Richards, Doug Simon, and

Mario Wolczko. 2013. One VM to Rule Them All. In Proceedings of the

2013 ACM International Symposium on New Ideas, New Paradigms, and

Reflections on Programming & Software (Indianapolis, Indiana, USA)

(Onward! 2013). Association for Computing Machinery, New York, NY,

USA, 187ś204. https://doi.org/10.1145/2509578.2509581

[50] Thomas Würthinger, Andreas Wöß, Lukas Stadler, Gilles Duboscq,

Doug Simon, and Christian Wimmer. 2012. Self-Optimizing AST In-

terpreters. In Proceedings of the 8th Symposium on Dynamic Languages

(Tucson, Arizona, USA) (DLS ’12). Association for Computing Ma-

chinery, New York, NY, USA, 73ś82. https://doi.org/10.1145/2384577.

2384587

[51] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2012. Finding

and understanding bugs in C compilers. ACM SIGPLAN Notices 47, 6

(2012), 283. https://doi.org/10.1145/2345156.1993532

[52] Jianzhou Zhao, Santosh Nagarakatte, Milo M.K. Martin, and Steve

Zdancewic. 2012. Formalizing the LLVM Intermediate Represen-

tation for Verified Program Transformations. In Proceedings of the

39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-

gramming Languages (Philadelphia, PA, USA) (POPL ’12). Associa-

tion for Computing Machinery, New York, NY, USA, 427ś440. https:

//doi.org/10.1145/2103656.2103709

75

http://www.infsec.ethz.ch/people/andreloc/publications/lochbihler08fool.pdf
http://www.infsec.ethz.ch/people/andreloc/publications/lochbihler08fool.pdf
https://doi.org/10.1007/978-3-642-11957-6_23
https://doi.org/10.1007/978-3-642-11957-6_23
https://doi.org/10.1007/978-3-642-28869-2_25
https://doi.org/10.1007/978-3-642-22863-6_17
https://doi.org/10.1007/978-3-642-22863-6_17
https://doi.org/10.1145/1706299.1706313
https://doi.org/10.1145/2509136.2509536
https://doi.org/10.1007/978-3-642-11970-5_13
https://doi.org/10.1145/1809028.1806611
https://doi.org/10.1145/1809028.1806611
https://doi.org/10.1145/1328438.1328444
https://doi.org/10.1145/1328438.1328444
https://doi.org/10.1145/1542476.1542512
https://doi.org/10.1145/1706299.1706311
https://doi.org/10.1145/2544137.2544153
https://doi.org/10.1145/3167082
https://isa-afp.org/entries/WebAssembly.html
https://doi.org/10.1145/3062341.3062381
https://doi.org/10.1145/3062341.3062381
https://doi.org/10.1145/2509578.2509581
https://doi.org/10.1145/2384577.2384587
https://doi.org/10.1145/2384577.2384587
https://doi.org/10.1145/2345156.1993532
https://doi.org/10.1145/2103656.2103709
https://doi.org/10.1145/2103656.2103709

	Abstract
	1 Motivation
	2 Background
	3 Overview of the Formalization
	4 Dyn: Stack-Based Interpreter for Dynamically Typed Languages
	4.1 Syntax and Semantics

	5 Inca: Inline Caching
	5.1 Syntax and Semantics
	5.2 Bisimulation Dyn-Inca
	5.3 Compilation from Dyn to Inca

	6 Ubx: Operations on Unboxed Data
	6.1 Syntax and Semantics
	6.2 Bisimulation Inca-Ubx
	6.3 Compilation from Inca to Ubx

	7 Practical Perspective
	8 Related Work
	8.1 Formalization and Verification of Translators
	8.2 Formalization and Verification of Dynamic Languages
	8.3 Just-in-Time Compilers & Interpreters

	9 Conclusion
	Acknowledgments
	References

