R2C: AOCR-Resilient Diversity with Reactive and
Reflective Camouflage

Felix Berlakovich
p#CSRL — Munich Computer Systems Research Lab
Research Institute CODE
University of the Bundeswehr Munich
Neubiberg, Germany
felix.berlakvovich@unibw.de

Abstract

Address-oblivious code reuse, AOCR for short, poses a sub-
stantial security risk, as it remains unchallenged. If neglected,
adversaries have a reliable way to attack systems, offering
an operational and profitable strategy. AOCR’s authors con-
clude that software diversity cannot mitigate AOCR, because
it exposes fundamental limits to diversification.

Reactive and reflective camouflage, or R*C for short, is
a full-fledged, LLVM-based defense that thwarts AOCR by
combining code and data diversification with reactive ca-
pabilities through booby traps. R%C includes optimizations
using AVX2 SIMD instructions, compiles complex real-world
software, such as browsers, and offers full support of C++.
R2C thus proves that AOCR poses no fundamental limits
to software diversification, but merely indicates that code
diversification without data diversification is a dead end.

An extensive evaluation along multiple dimensions proves
the practicality of R*C. We evaluate the impact of our defense
on performance, and find that R?C shows low performance
impacts on compute-intensive benchmarks (6.6 — 8.5% geo-
metric mean on SPEC CPU 2017). A security evaluation indi-
cates R%C’s resistance against different types of code-reuse
attacks.
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1 Motivation: Check but not mate!

Over the past decade, we have witnessed a cat-and-mouse
game between the ever-increasing sophistication in code
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reuse attacks, and correspondingly the ever-increasing so-
phistication in code reuse defenses. Increasingly sophisti-
cated attacks demonstrated shortcomings and invalid de-
fender assumptions, invariably leading to responses by one-
upping their defenses. Two defensive research directions
were particularly affected: Control-Flow Integrity (CFI) and
software diversity. Control-Flow Integrity had some of its
assumptions shaken, particularly the idea that it could be
fast and secure. CFI did eventually see industry adoption
through implementations in LLVM, support by Microsoft
and by Intel [38, 52, 65]. The demonstrated performance
and precision benefits of shadow stacks and their ensuing
popularity trace their origins back to this line of work.

Software diversity demonstrated its versatility and re-
silience by withstanding increasing attack sophistication
through building so-called leakage-resilient software diversi-
fication methods, exemplified by Readactor [25] and Readac-
tor++ [23].

Control-Flow Bending [17] and Control Jujitsu [27] demon-
strated the limits of CFI. Address-Oblivious Code Reuse
(AOCR), on the other hand, claimed to have identified the
fundamental limits of diversity [59]. AOCR’s “check-mate”
resulted in its call for supporting enforcement-based defenses
like Control-Flow Integrity instead. Our research contradicts
AOCR’s conclusion: specifically, our results provide evidence
that AOCR does not identify the fundamental limits of diver-
sity; instead AOCR indicates that leakage-resilient diversity
focusing exclusively on code diversification is a dead end.
AOCR’s authors seem to agree with our finding, as they
explicitly mention the following:

Although our variant of code reuse is oblivious
to the code layout, it is not oblivious to the data
layout. In particular, it makes assumptions on
the layout of structures as well as the layout of
global variables.

Although comprehensive data diversification prevents
AOCR in theory, its high performance impact is prohibi-
tive in practice [8, 16]. R%C’s key contribution is a targeted
and efficient data diversification technique that focuses on
preventing AOCR’s inference steps, combined with code di-
versification to thwart gadget-based code reuse attacks. To


https://doi.org/10.1145/3552326.3587439
https://doi.org/10.1145/3552326.3587439

EuroSys ’23, May 8-12, 2023, Rome, Italy

increase R2C security, we build on the idea of booby traps to
disincentivize brute-force attacks [23-25].
Summing up, this paper contributes the following:

e We present reactive and reflective camouflage, or R2C
for short, a new system that combines effective leakage-
resilient code diversification with targeted and efficient
data diversification. The reactive component frustrates
brute-force attacks through pervasive use of booby
traps. The reflective component ensures that diversi-
fied data is virtually indistinguishable from original
data. The camouflage component provides cover for
actual code pointers through booby-trapped pointers.

e We discuss the relevant details of a full-fledged, industrial-
strength prototype implementation in LLVM.

e We demonstrate an important optimization that uses
AVX2 instructions to reduce the performance impact.

e We report the results of our careful and detailed eval-
uation (see Section 6 and Section 7). Specifically, our
evaluation shows:

— Performance We report low performance impacts
of 6.6 - 8.5% on the SPEC CPU 2017 benchmark suite
(see Section 6.2).

— Security We systematically analyze the security
from an attacker’s perspective, and find that R%C
either thwarts AOCR attacks altogether or reduces
attack surface considerably (see Section 7.2).

— Scalability R%C succeeds at compiling complex, real-
world software that scales up to 32 million lines of
C/C++ code (see Section 6.3).

2 Background

2.1 Evolution of Leakage-Resilient Software
Diversity

In 2007, Shacham introduced the first version of return-ori-
ented programming (ROP) attacks [61], a generalization of
whole-function reuse attacks [43]. ROP attacks reuse small
snippets of assembly that are already present in the target
process and end in a free-branch instruction. These snippets
are commonly referred to as gadgets and by chaining them
into a gadget chain, an attacker can achieve arbitrary code
execution.

ROP attacks typically proceed in three phases: (i) a recon-
naissance phase where the attacker collects gadget addresses,
(ii) a memory corruption to overwrite control-flow data, and
(iii) the gadget chain execution that transfers control to each
gadget.

Several defenses against ROP attacks have been proposed.
Broadly speaking, most of these defenses either follow the
principle of (i) enforcement, or (ii) randomization. Enforce-
ment-based defenses aim to prevent either the memory cor-
ruption, or the gadget chain execution. Examples for enforce-
ment-based approaches are CFI [4], Control-Pointer Integrity
(CPI) [44] or Software-based Fault Isolation (SFI) [71].
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Figure 1. Prior systems primarily diversify code, leaving
the layout of observable data predictable (left vs middle,
see Section 2.3). RC (right) diversifies code and observable
data.

Randomization-based defenses leverage the observation
that ROP attacks depend crucially on the software monocul-
ture. Code-layout randomization techniques, for example,
invalidate adversarial assumptions/expectations that all in-
stallations of a given piece of software have identical gadget
locations [21, 28, 34, 35, 42, 45, 54].

Code-layout randomization assumes that an attacker can-
not disclose the randomized code layout. In 2013, the JIT-ROP
attack invalidated this assumption [62]. A JIT-ROP attack
proceeds in two stages. First, an attacker reads pointers into
the code section to disclose the randomized code-layout at
runtime. Second, this learned information is used to relocate
a ROP attack to the target process memory layout.

As a response to JIT-ROP, researchers upgraded their
defenses to provide leakage-resilience. A key component
in these defenses is to protect the randomized code with
execute-only memory, thereby preventing an attacker from
leaking a process’ code section.

Unable to disclose the code layout directly, a more sophis-
ticated version of JIT-ROP—indirect JIT-ROP—demonstrated
the feasibility of inferring gadget locations from code point-
ers found on the stack [25, 26], which is commonly referred
to as indirect information disclosure.

2.2 Code-Pointer Hiding

In response to indirect information disclosure, Crane et al.
proposed Code-Pointer Hiding (CPH) [25]. To prevent dis-
closure, CPH redirects code pointers through a randomized
trampoline table, located in execute-only memory. AOCR
demonstrates that attacks are still possible even in the pres-
ence of CPH or similar protection schemes: Even without
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concrete information about gadgets, CPH function pointers
can be called using whole-function reuse. Due to the specific
layout of CPH’s trampoline table, an attacker can further
use CPH protected return addresses to reveal the location of
such function pointers. Thus, the leakage of return addresses
and code pointers remains a threat with or without CPH.

2.3 Address-Oblivious Code Reuse

While indirect JIT-ROP focuses on the discovery of gadgets,
address-oblivious code reuse generalizes from sub-function-
level granularity to whole-function reuse, such as counterfeit
object-oriented programming [60]. As a result of this gener-
alization, defenses focusing on a lower granularity become
ineffective.

A closer look at the anatomy of AOCR reveals that it com-
prises two stages, a profiling stage to harvest valuable code
pointers, followed by mounting the actual whole-function
reuse attack. AOCR rests on the fact that existing defenses
primarily diversify code, but leave the layout of observable
data intact. Figure 1 shows the information available to an at-
tacker from an unprotected system. Without protection, the
global variables, the heap and the stack remain predictable
and contain enough information to mount a whole-function
reuse attack. Specifically, the attacks in the AOCR paper
demonstrate how an attacker can (A) profile pointer locations
on the stack, (B) leak heap data to reach the data section, and
(©) use the predictable data section layout to corrupt function
default parameters (see Figure 2a).

Among the observable data areas, the stack is particu-
larly vulnerable. The stack contains a large number of code
pointers (return addresses and function pointers) as well as
pointers to the heap and thus serves as a stepping stone to
reach other data areas. AOCR’s Malicious Thread Blocking
further allows an attacker to reliably observe the stack of a
single thread.

Existing stack frame diversification techniques, like stack
slot randomization, can hinder the exact profiling of function
pointer locations [5, 39, 58]. Unfortunately, the location of
return addresses remains predictable even in the presence of
stack slot randomization. The AOCR authors also demon-
strate that, unlike for code pointers, an attacker does not
need an exact one to one mapping of data pointers to their
targets. Instead, a statistical analysis of pointers based on
their value ranges can identify groups of pointers, such as
heap pointers, each of which leads to the desired data area.

3 Threat Model and Assumptions

Our threat model assumes that the attacker has access to a
memory corruption vulnerability that enables control-flow
hijacking. In particular, we assume that the program contains
gadgets for a ROP attack as well as suitable functions for a
whole-function reuse attack. In addition, we assume that the
attacker can deterministically leak stack frames (e.g., with
the help of Malicious Thread Blocking) [59].
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Our defense integrates with existing defenses. We assume,
specifically, that the data section is protected against code
injection (e.g., WX or DEP) [51] and the text section with
some form of execute-only memory. Due to compatibility
problems with xom-switch, we could not evaluate the impact
of execute-only memory in combination with RZC. However,
the overhead introduced by execute-only hardware solutions
is generally negligible [75].

Our implementation focuses on protecting against infor-
mation disclosure through the stack or the data section. We
do not consider other types of information leaks such as
side-channels [40, 41, 48]. Note that using side channels to
uncloak EPT-based execute-only memory does not work [32].
Side channels could, however, be used to infer heap informa-
tion.

4 The Design of R2C

R?C is a leakage-resilient diversity defense against advanced
code-reuse attacks. As a first step, and under the protection of
execute-only memory, R2C randomizes the order of functions
in the text section to thwart ROP and JIT-ROP attacks. R2C
further aims to remove the building blocks of sophisticated
code-reuse attacks such as indirect JIT-ROP and AOCR:

(i) a predictable layout of global variables as a means to
manipulate function arguments in a whole-function
reuse attack;

(ii) the stack as a source for code and heap pointer leaks.

Similar to Readactor++, R2C protects global variables by ran-
domizing their order and by inserting random padding [23].

To illustrate the challenges of protecting the stack, con-
sider the unprotected stack frame in Figure 2a. Figure 2a
shows the stack frame of a function when called from func-
tion F on the x86_64 platform with the System V ABI calling
convention. When locating pointers on the stack, an attacker
can tap two sources of information. First, an attacker can
leverage the predictable location of pointers relative to other
stack objects. If the adversary has information pertaining
to some of these stack objects (e.g., the value @xaaaa of a
local variable A in function F), he can use this information as
anchor to locate the pointer. For example, in Figure 2a the
return address is one machine word below function variable
A and adjacent to the spilled base pointer (rbp). Second, an
attacker can locate pointers based on their value ranges. The
heap pointer in Figure 2a, for example, has a different address
range than code pointers or the spilled base pointer. If both
of these methods fail, an attacker can still resort to guess-
ing. Under specific circumstances, such brute-force attacks
are a reasonable option, e.g., some servers restart crashed
worker processes without reloading their binary code images
(e.g., nginx, Apache, OpenSSH) [11].

To address the described issues, R2C combines two differ-
ent techniques:
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Figure 2. The stack layout of an unprotected stack (left) and a stack protected by R2C (right). We assume the System V ABI on

the x86_64 platform.

(i) So-called booby-trapped return addresses, or BTRAs
for short, randomize the precise position of a return
address in a stack frame. By inserting BTRAs, R2C
changes the relative position of the return address
to other stack objects. An attacker is, therefore, no
longer able to rely on specific stack objects as an-
chor points to locate the return address. In addition,
BTRAs disguise the return address among enclosing
and similar-looking values, as they are specifically
chosen to look and behave exactly like benign return
addresses. BTRAs point to booby-trap functions ran-
domly distributed in the text section. Without exact
code-layout information, an adversary cannot separate
BTRA addresses from benign addresses.

(if) A combination of booby-trapped data pointers, or BT-
DPs for short, and stack slot randomization protects
heap pointers against disclosure. Stack object permu-
tation randomizes the position of heap pointers rel-
ative to other stack objects. The insertion of BTDPs
misleads AOCR’s statistical analysis based on pointer
value ranges. As BTDPs point into the heap like be-
nign heap pointers, both share the same value range.
To protect against brute force attacks, BTDPs point
into guard pages. Dereferencing a BTDP causes an im-
mediate fault, giving defenders a way to respond to an
ongoing attack.

The following subsections give an in-detail presentation
of the relevant design decisions and requirements. First, we
describe the details on inserting booby-trapped return ad-
dresses (see Section 4.1). Second, we explain how BTDPs
thwart the localization of heap pointers (see Section 4.2).

Third, we illustrate how additional code randomization strength-

ens the protection afforded by BTRAs and BTDPs (see Sec-
tion 4.3).

4.1 The Mimicry of Booby-Trapped Return
Addresses

An indispensable prerequisite for effective BTRAs is that
they must be virtually indistinguishable from actual, benign
return addresses. For BTRAs to masquerade as return ad-
dresses, they must: (i) look like return addresses; (ii) behave
like return addresses; (iii) resist brute force attacks.

To achieve the first and the third goal, BTRAs point to
booby trap functions. Booby trap functions are distributed
randomly in the text section, giving BTRAs the same value
range as benign return addresses. Absent exact informa-
tion about return addresses and leakage through side chan-
nels, an attacker could still apply brute-force. Blind ROP, for
example, demonstrates the effectiveness and feasibility of
brute-force to learn the location of a read gadget [11]. Booby
traps provide an effective way to penalize such brute force
attempts [24]. In the context of R?C, a classic Blind ROP
attack is infeasible for two reasons: (i) the booby trap func-
tions distributed in the text section deter attempts to blindly
locate gadgets with brute force; (ii) execute-only memory
prevents Blind ROP from disclosing the text section with a
found read gadget. Likewise, brute forcing an attack with
all return address candidates is improbable because all but
one of the candidates lead to a booby trap function. We dis-
cuss the combination of Blind ROP with the more powerful
PIROP attack in Section 7.2.5.

To achieve the second goal, BTRAs mimic the runtime
behavior of return addresses. Since return addresses are part
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Figure 3. Insertion and deletion of booby-trapped return addresses: Code perspective (Figure 3a), and effect on the stack
(Figure 3b). For brevity the figure uses only two BTRAs before (BTRA 1 and BTRA 2) and one BTRA after (BTRA 3) the return

address.

of the control flow of a program, they show a distinct ob-
servable runtime behavior. Recall the following properties
of return addresses and call sites, which must also hold for
booby-trapped return addresses:

(A) Areturn address occurs exactly once in the stack frame;

(B) Multiple invocations of the same call site have the
same return address;

(C) Different call sites have different return addresses.

Violating any of these properties might allow an attacker to
learn the actual return address. We take the following pre-
cautions to preserve the properties. To preserve property (A),
R2C ensures that each call site uses the same booby-trapped
return address just once. To preserve property (B), R%C does
not change the set of BTRAs for a call site at run-time. This
decision represents a rare case, where more dynamism is
less effective. Consider a single call site with dynamically
changing BTRASs: just two observations suffice to identify the
return address, as it is the only pointer remaining identical.
To preserve property (C), R%C inserts a randomly chosen set
of BTRAs at each call-site. If, instead, one were to insert them
in the callee, multiple call sites would have the identical set
of BTRAs, with only one difference: the return address.

For this very reason—preserving property (C)—R%C also
avoids reusing booby-trapped return addresses between dif-
ferent call sites as much as possible. In particular, an attacker
could leak multiple stack frames and look for recurring ad-
dresses to identify BTRAs. Due to the ensuing combinatorial
explosion, avoiding the reuse of BTRAs between call sites
becomes increasingly difficult with an increasing number of
call sites. To counter this combinatorial effect, we tolerate
occasional reuse and parameterize the maximum number of
BTRAs. An attacker would have to leak two specific stack
frames reusing the same BTRAs to gain valuable information.
Such a leak is unlikely in practice because the BTRAs are
distributed randomly over the text section.

4.2 Booby-Trapped Data Pointers

Contrary to return addresses, the runtime requirements for
non-control-flow related stack objects are not as strict. Stack
objects like local variables, for example, can be permuted
freely within the stack frame. Such a reordering invalidates
any a priori knowledge an attacker might have regarding
the relative position of stack objects to each other.

Without the knowledge of stack object positions an at-
tacker can still resort to analyzing the value ranges of stack
objects. The AOCR paper demonstrates that a statistical anal-
ysis of two pages of stack values suffices to reliably identify
heap pointers. Due to the large address space of x64 systems,
the values of pointers occur in clusters, with heap pointers
typically constituting the third largest cluster. To reach the
heap, an attacker does not necessarily need to identify a
specific heap pointer. Note, however, that thanks to stack
slot randomization an attacker also cannot identify a specific
heap pointer. Instead, an attacker has to pick and dereference
an arbitrary pointer from the cluster of heap pointers. R*C
uses this insight to penalize the random choice by mixing
BTDPs into the cluster of benign heap pointers. BTDPs point
into randomly distributed guard pages on the heap, thus,
sharing the same value range as benign heap pointers. A
statistical analysis will, thus, sort BTDPs and benign heap
pointers into a single cluster. If an attacker dereferences a
BTDP, she causes a segmentation fault that can be handled
by the program or a monitoring system.

4.3 Strengthening R2C Through Code
Randomization

To strengthen security, R%C diversifies the code layout at a
sub-function granularity. To this end, R?C randomly inserts
NOP instructions at call sites, traps in function prologs, and
randomizes register allocation [25, 54]. By diversifying these
function parts, two specific types of inference are impeded:

~—
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Figure 4. BTRA setup with AVX2 instructions. The AVX2 instructions load the BTRAs from a call-site specific array

in the data section (arr) and write them to the stack in batch.

(i) from return addresses to function addresses, and (ii) from
function addresses to gadget locations.

The inserted NOPs at a call site change the relative off-
set between the return address and the calling function ad-
dress. As a result, an attacker can no longer reliably infer the
function address from a leaked return address, effectively
restricting the use of return addresses to gadget localization.
Whereas for a whole-function reuse attack a single function
pointer might suffice, an attacker typically needs multiple
leaked addresses to locate gadgets. Return addresses are pro-
tected by BTRAs and increasing the number of required leaks
increases the probability of an attacker choosing a BTRA
over the real return address. Thus, increasing the number of
required leaks increases the overall security.

The inserted traps in the prolog change the relative off-
set from the function start to a potential gadget location.
An attacker leaking a function pointer can, therefore, no
longer reliably infer gadget locations and is restricted to
whole-function reuse. Although in principle, a single leaked
function pointer might suffice, whole-function reuse attacks
have stricter requirements on the leaked function point-
ers (e.g., corruptible default parameters). Potential leaks are
therefore less likely to meet those requirements. Compared
with return addresses, function pointers on the stack occur
less frequently and are, furthermore, protected by stack slot
randomization.

5 The R2C Compiler

We implemented R*C using the LLVM compiler framework [47].

Our modified compiler supports the compilation of a wide
range of systems software for the Linux x86_64 platform
(see Section 6.3). To support complex applications like We-
bkit, R%C is fully compatible with Position Independent Code
(PIC) for ASLR, stack unwinding, and exception handling,.
R?C combines a multitude of different diversification tech-
niques, including function shuffling, global variable shuf-
fling, and NOP insertion. In addition, R2C supports two new

diversification techniques that we describe in more detail
in the following sections. Specifically, our compiler (i) in-
struments call sites with booby-trapped return addresses
(see Section 5.1); (ii) instruments functions to insert BTDPs,
which thwart the statistical analysis of pointers on the stack
(see Section 5.2).

5.1 BTRAs: Booby-Trapped Return Addresses

To enclose return addresses with BTRAs, steps (1) to (4) in
Figure 3 are required. First, the caller pushes randomly cho-
sen BTRAs together with the return address on the stack
(1. Note that the position of the return address within the
sequence of BTRAs is chosen randomly at compile time. Sec-
ond, the caller positions the stack pointer above the return
address @ Third, the caller executes the call instruction
(3). On x86, call instructions implicitly perform two op-
erations: (i) write the return address to the current stack
pointer position; (ii) transfer control to the callee. Due to
the prior positioning of the stack pointer, the call instruction
overwrites the return address already on the stack. Put differ-
ently, the addresses on the stack do not change after step (1).
Writing all the addresses to the stack at once eliminates the
possibility for a race condition window during which an at-
tacker could observe stack changes. If, for example, only the
BTRAs were inserted before the call, the attacker could learn
the return address by observing the stack right before and
after the call instruction [56]. While such a precise timing
might seem unattainable in practice, a similar race-condition
attack forced Microsoft to rethink their Return Flow Guard
architecture [9].

The position of the return address chosen by the caller
defines how many BTRAs precede the return address. The
preceding BTRAs create an offset between the return address
and caller stack objects (e.g., local variables in the caller). We
call the resulting offset pre-offset.

After the control-flow transfer, the stack pointer points di-
rectly below the return address, still pointing into the BTRA
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sequence. Subsequent register spills in the callee would,
therefore, overwrite BTRAs below the return address. To
avoid overwriting the BTRAs, in the last step the callee de-
creases the stack pointer by a random offset (4). The random
offset chosen by the callee defines the number of BTRAs that
succeed the return address. The succeeding BTRAs create
an offset between the return address and callee stack ob-
jects (e.g., spilled registers). This resulting offset is called a
post-offset.

After adjusting the stack pointer, the callee executes the
regular function prologue. When reaching the epilogue of
the callee, the setup process is reversed as shown in Fig-
ure 3, steps (5) to (7). First, to identify the correct return
address, the callee reverts the post-offset (1) before execut-
ing the return instruction. Next, the return instruction pops
the return address from the stack {2) and transfers control
back to the caller. Finally, the caller reverts the pre-offset { .f; )3
which is required to perform stack-relative operations, such
as referencing spilled local variables or function parameters.

Since the caller chooses the number of BTRAs to push
and the pre-offset, while the callee chooses the post-offset,
caller and callee cooperate in the setup of BTRAs. For direct
call sites, R2C bounds the number of BTRAs after the return
address at compile-time to fit into the post-offset. For indirect
call sites, no synchronization between the caller and the
callee is possible at compile time. Instead, we tolerate that the
caller potentially overwrites BTRAs after the return address.
Per default, RC does not add BTRAs to call sites that call
unprotected code. While adding BTRAs would not harm
functionality, unprotected callees would overwrite all BTRAs
after the return address. We discuss the security implications
in Section 7.4.1.

Depending on the relocation model, the addresses are ei-
ther embedded in the push instructions or read from the
Global Offset Table (GOT). Since an attacker cannot pre-
dictably identify the return address among the BTRAs, stor-
ing the addresses in the data section does not compromise
security.

If the randomly chosen number of BTRAs before the return
address is odd, R%C inserts an additional BTRA to keep the
stack aligned. On x86-64, the stack pointer must be 16 byte
aligned, as programs crash when certain instructions access
a misaligned stack.

5.1.1 Stack Arguments. The BTRAs inserted by R*C change
the distance between stack objects above and below the re-
turn address. In particular, the distance increases by the sum
of pre- and post-offset. This increased distance typically does
not cause any compatibility issues, because most functions
do not access stack objects above their return address. With
one notable exception: In the System V ABI a caller must
pass arguments that do not fit into parameter registers on
the stack, above the return address.
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R%C

data section

naive

stack

data section

Figure 5. An attacker could observe the BTDPs S1, S2 and
S3 occurring in the data section and on the stack (left, naive).
In R2C no single BTDP occurs in both places (right). The
BTDPs X and Y mislead attempts to disclose the BTDP array
pointer from the data section (see Section 5.2).

To access stack arguments despite the varying distance,
we devised a method called offset-invariant addressing. Offset-
invariant addressing moves the setup of the frame pointer
from the function prologue to the call site. In particular, the
caller positions the frame pointer before the varying pre-
offset. Thus, the distance between the frame pointer and the
stack arguments can be computed statically. In the callee we
omit the frame pointer setup, and use the already prepared
frame pointer to access stack arguments.

5.1.2 Optimization with AVX2. Implementing the BTRA
setup with push instructions is conceptually straightforward,
but exerts significant pressure on the instruction cache. To
improve R?C’s performance, we built an optimized variant
that sets up the BTRAs and the return address with AVX2
vector instructions (see Figure 4) [37].

Before each call site, we initialize a vector register with
BTRAs and the return address and write them to the stack.
The addresses are read from a call-site specific array in the
data section, prepared at compile time. Regarding the secu-
rity of reading the addresses from the data section, the same
reason as for the GOT holds. After the BTRAs and the re-
turn address are written to the stack, RC positions the stack
pointer before the return address. Without vzeroupper we
observed a performance impact of up to 50%. We discuss the
overall performance improvements afforded by the AVX2
instructions in Section 6.2.

5.2 BTDPs: Booby-Trap Data Pointers

BTDPs aim to stop an attacker from following heap point-
ers found on the stack. To maintain the illusion of a benign
heap pointer, BTDPs must have the same value range as
real heap pointers, but at the same time cause a fault when
being dereferenced. Ideally, BTDPs would point to random
addresses on the heap that are protected by memory permis-
sions. Unfortunately, the Intel architecture currently does
not offer sub-page level permissions. We therefore simulate
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the desired effect by letting BTDPs point to random offsets
in guard pages allocated from heap memory.

Since heap memory is managed by the standard library
(e.g. glibc), these allocations cannot be performed at com-
pile time. Instead, R%C registers a constructor function that
performs the allocations at program start. Specifically, the
constructor function allocates a configurable number of page-
aligned and page-sized chunks of heap memory. Next, the
constructor function frees all but a randomly chosen subset
of those allocations. The remaining allocations are scattered
randomly across the heap, are page aligned, and span an
entire page. R2C stores pointers to random offsets within
those allocations in a global pointer array in the data section.
To protect the newly created heap pointers from dereferenc-
ing, the constructor function revokes the read permission
from the occupied page. Allocating the guard pages with
malloc without freeing them, prevents glibc from reusing
the protected page for other allocations.

During compilation, R“C instruments functions to write
BTDPs from the pointer array to the stack. How many BTDPs
are written per function is chosen randomly chosen using
compile-time parameters. The stack slots for the BTDPs are
allocated like stack slots for local variables. As a result, stack
slot randomization shuffles BTDPs with other stack objects,
including benign heap pointers.

Storing the BTDPs in the data section potentially poses
a security risk. If an attacker has access to the data section
(i.e., knows its location), she could compare heap pointers
found in the data section with pointers observed on the stack
(see Figure 5). Pointers observed in both locations could po-
tentially be BTDPs. To avoid the risk of triggering a BTDP,
an attacker could limit himself to pointers occurring on the
stack only. To protect BTDPs against such an attack scenario,
R2C applies R%C’s principle also to the array holding the
BTDPs. Specifically, R*C allocates the pointer array on the
heap and stores only a pointer to the array in the data section.
That is, instead of containing the BTDPs directly, the data
section now contains only a single heap pointer (apart from
application specific pointers). Since an attacker might still
be able to locate the pointer to the pointer array, R%C inserts
additional BTDPs into the data section. Note, that these ad-
ditional BTDPs never occur on the stack and the pointers on
the heap are inaccessible to the attacker. The attacker thus
loses the ability to reliably identify BTDPs. See Figure 5 for
a comparison of a naive and a hardened implementation.

As a simple optimization we omit the instrumentation for
all functions without stack allocations. Such functions are
guaranteed to not write benign heap pointers to the stack
either. While this optimization over-approximates the set of
functions to instrument, it still improves performance for
simple functions (e.g., accessors).
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Figure 6. The performance impact of full protection with
R%C on four different machines (see Section 6.2.4).

6 Evaluation
6.1 System Configuration

We evaluate R%C on four different machines. Machine EPYC
Rome is equipped with an AMD EPYC Rome 7H12 CPU
running at 3.2 GHz, 1TB DDR4 RAM running at 3200 MHz,
and Debian 11. Machine i9-9900K is equipped with an Intel
Core 19-9900K CPU running at 3.6 GHz, 64GB DDR4 RAM
running at 2667 MHz, and Debian 11. Machine TR 3970X
is equipped with an AMD Ryzen Threadripper 3970X CPU
running at 3.7 GHz, 128GB DDR4 RAM running at 2400 MHz,
and Debian 10. Machine Xeon is equipped with an Intel Xeon
Platinum 8358 CPU running at 2.60GHz, 256GB DDR4 RAM
running at 3200 MHz, and Debian 11.

On each machine we used the bundled GCC and gold
linker version to compile LLVM. Our LLVM modifications
are based on LLVM 11 and we compiled the benchmarks
against the bundled glibc and libstdc++ versions.

6.2 Performance

To evaluate the performance impact of R%C, we built and
ran the SPEC CPU 2017 benchmark suite using our R2C
compiler. The SPEC CPU 2017 suite is a collection of CPU-
intensive C and C++ benchmark programs. To allow for direct
comparison with prior work, we included the floating point
benchmarks [66].
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We compiled all benchmarks with the -03 optimization
level and link-time optimization—LLVM’s ThinLTO model
in our case—enabled. As LLVM does not yet support the
compilation of glibc, we compiled the benchmarks against
the unprotected system version of glibc and libstdc++. To
measure the worst-case overhead, we also enabled BTRAs
for call sites to unprotected code (see Section 7.4.1). For the
evaluation of full R*C we took the median execution time
of 20 runs. For the analysis of RC’s components we used
EPYC Rome and took the median execution time of 12 runs.
Since the location of return addresses and the distribution
of BTDPs is random, we recompiled the benchmarks with
a different seed for each of the executions. To guarantee a
fair comparison, we compiled the baseline with the same
compiler version and flags but with R2C disabled.

For the webserver benchmarks, we used wrk as client
and nginx version 1.14.2 and Apache version 2.4.54, serving
64-byte pages. We split the CPU cores between wrk and the
webserver and gradually increased the number of concurrent
connections until the CPU was fully saturated. We compared
the median throughput of five runs at the previously deter-
mined saturation connection count.

6.2.1 BTRAs. We evaluated the overhead of BTRAs with
the push setup and with our optimized AVX2 setup sequence
respectively. To isolate the overhead of BTRAs, we disabled
other diversification measures. We configured R?C to instru-
ment each call site with a total of 10 BTRAs and between 1
and 9 NOPs (see Section 4.3).

For the push setup, 10 BTRAs mean that R?C inserts up
to 12 push instructions per call site: 10 for the BTRAs, one
for the return address, and one to keep the stack aligned
(see Section 5.1). Table 1 shows that the geometric mean
overhead of this configuration is 6%, but the outlier omnetpp
has an overhead of 21%.

In contrast to the push instructions, setting up 10 BTRAs
with AVX2 instructions requires only 7 instructions (see Sec-
tion 5.1). Table 1 shows that the optimization improves the
overall performance by 2%. Most importantly, the optimiza-
tion decreases the overhead of the outlier omnetpp by about
13 absolute percent points, down to 8%. In this configuration,
the maximum overhead of 10% is caused by xalancbmk.

To analyze the overhead of offset-invariant addressing
(see Section 5.1.1), we built a configuration without applying
any diversification measure, but with offset-invariant ad-
dressing enabled. Enabling only offset-invariant addressing
allows us to measure its performance impact, and the missed
opportunities of the frame-pointer omission optimization.
We found that the resulting geometric mean performance
overhead is 0.79% with a maximum impact of 3.61%. These
numbers suggest that the majority of the overhead is caused
by writing the BTRAs to the stack.
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max geomean

Push 1.21 1.06
AVX 1.10 1.04
BTDP  1.05 1.02
Prolog  1.06 1.02
Layout 1.02 1.00

Table 1. The maximum and geometric mean overhead of
R2C’s components. See Section 6.2.1, Section 6.2.2 and Sec-
tion 6.2.3 for details. The overhead is relative to the baseline
without R?C.

6.2.2 BTDPs. We configured R%C to insert between zero
and five BTDPs per function, but disabled other diversifi-
cation measures. Table 1 shows that the geometric mean
overhead of BTDPs is 2% with xalancbmk causing the max-
imum overhead of 5%. The optimization to insert BTDPs
only in functions that write to their stack frame improves
performance by 1%.

6.2.3 Prolog & Layout Randomization. We also isolated
the performance impact of prolog trap insertion, and code-
and data-layout randomization techniques—i.e., stack slot
shuffling, global variable shuffling, and register-allocation
randomization. The prolog insertion randomly inserts be-
tween one and five traps into each function prolog, causing a
geometric mean overhead of 2%, with xalancbmk being most
affected at 6%. The combination of layout randomization
techniques generally caused negligible overhead.

6.2.4 Full R2C. We built a configuration with all R*C pro-
tections enabled (see Figure 6). The geometric mean overhead
is similar on all systems, with the Xeon machine showing the
highest overhead at 8.5% for the full benchmark suite. Some
benchmarks show diverging results on different machines.
On i9-9900K, perlbench has a significantly higher overhead
than on the other machines. For omnetpp, the Xeon machine
has the highest overhead at 21%. Conversely, xalancbmk
shows better results on i9-9900K and Xeon than on the AMD
machines.

On i9-9900K, we found the webserver throughput decrease
to be 13% for nginx and 12% for Apache. On the AMD ma-
chines, the throughput decrease was between 3 and 4 percent
for both nginx and Apache.

6.2.5 Memory overhead. To evaluate R*C’s memory over-
head we linked the benchmark programs from the SPEC CPU
2017 suite to a static library that prints the maxrss rusage
metric once the program ends. The maxrss metric is the
maximum resident-set size of a process during its lifetime.
We chose this methodology because it allows measuring the
memory overhead without impacting the benchmark per-
formance. With this methodology, we found the memory
overhead of the SPEC benchmarks to be 1-3%.
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For the webserver benchmarks we had to choose a differ-
ent methodology because the webservers spawn child pro-
cesses. With child processes, maxrss reflects the maximum
usage among all child processes instead of the combined
maximum usage. Instead, we started a separate monitoring
process that records the RSS usage of each webserver process
every second and calculated the median. With this method-
ology, we found the memory overhead of the webserver
benchmarks to be about 100%. We verified experimentally
that about 55% of the memory overhead is caused by the
page allocations for BTDPs. The rest is caused by BTRAs
and the increased binary size.

6.3 Scalability

Although the SPEC benchmark suite covers a wide variety
of test programs, we also compiled real-world software with
R?C. Apart from Apache and nginx, we also compiled the
GTK version of WebKit [2] and Chromium [1]. We built both
browsers with a fixed total number of 10 BTRAs per call site.
WebKit and Chromium are massive C++ projects with more
than 4.5 million lines and almost 32 million lines of C/C++
code, respectively.

To verify that R2C does not introduce errors into the
browser, we ran the included tests as well as the Speedome-
ter browser benchmark. To pass the tests, we had to modify
a single source file in Chromium, and three source files in
Webkit to deactivate R%C for a few functions. In both cases,
unprotected code called an R*C compiled function with stack
arguments. We discuss this implementation limitation in Sec-
tion 7.4.2. We did not include the Speedometer performance
results in the performance evaluation since Speedometer’s
results showed a variation of more than 20% even in the
baseline. In daily browsing we did not notice any difference.

7 Discussion
7.1 Performance

As evidenced by the benchmarks, the optimized BTRA setup
sequence improves R?C’s performance considerably (see Ta-
ble 1). While our implementation uses AVX2 vector instruc-
tions, falling back to SSE vector instructions would be an
alternative for more feature constrained CPUs. For CPU’s
without vector extensions the push based setup sequence
provides a viable alternative without loss of security. We
ran our benchmarks also on a machine with AVX512 and
found that the performance is roughly identical with the
same number of vector moves. On such machines, we could
either half the BTRA performance impact, or use twice as
many BTRAs.

Figure 6 shows that benchmarks with a large number of
functions and function calls are affected most by R?C. R?C
adds BTRAs per call site, explaining the overhead for func-
tion heavy benchmarks. To test this correlation with call
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Benchmark Call Frequency

perlbench 9,435,182,963
gcc 7,471,474,392
mcf 38,657,893,688
Ibm 20,906,700
omnetpp 23,536,583,520
xalancbmk  12,430,137,048

X264 3,400,115,007

deepsjeng  11,366,032,234
imagick 10,441,212,712
leela 13,108,456,661
nab 135,237,228,510
XZ 3,287,645,643

Table 2. Median call frequencies of SPEC CPU 2017 bench-
marks across all inputs.

frequency, we instrumented the SPEC CPU benchmark pro-
grams to count the number of executed call instructions. Our
instrumentation ignores tail calls because tail calls do not
push a return address to the stack and, thus, no BTRAs are in-
serted. Table 2 shows the median number of calls performed
by the SPEC CPU 2017 benchmarks. For each benchmark
we took the median call frequencies across all inputs. The
data suggests that there is a correlation with the overhead,
but this correlation is insufficient to predict the overhead:
Perlbench, for example, has less than half the number of calls
as omnetpp, but shows a similar overhead.

The difference between the push and AVX2 setup sequence
(see Table 1) indicates that increased instruction cache pres-
sure contributes to the overhead. Similarly, prolog trap in-
sertion also contributes to the increased instruction cache
pressure.

Surprised by the difference of memory overhead between
SPEC CPU 2017 benchmarks and webserver benchmarks,
we verified the memory SPEC results by applying the same
methodology as for the webserver benchmarks. Instead of
relying on the maxrss counter, we recorded the RSS usage of
the SPEC benchmarks with a separate monitoring process.
The results confirmed a memory overhead of only a few
percent. We suspect that for the SPEC benchmarks, memory
overhead caused by R?C is low compared to the memory con-
sumed by the benchmark itself. Further research is necessary
to substantiate these suspicions.

7.2  Security

While execute-only memory and function shuffling defeat
classic ROP and JIT-ROP attacks, indirect JIT-ROP and AOCR
remain an issue. For an indirect JIT-ROP attack, an attacker
needs to locate valid code pointers, such as return addresses,
in readable memory and infer gadget locations based on the
found pointers. For an AOCR attack an attacker needs to
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locate function pointers or infer them from other code point-
ers (e.g., return addresses), as well as manipulate function
parameters. In the following subsections we discuss how
R?C counters each of these attack vectors. We also discuss
the security of stack unwinding tables and the possibility of
an attacker corrupting entire or partial code pointers.

7.2.1 Return Addresses. R°C protects return addresses
with BTRAs. As detailed in Section 4.1, the only way for an
attacker to identify a return address among the BTRAs is by
applying brute force. An attacker’s chance to correctly guess
the return address depends on the number of BTRAs used.
If R is the number of BTRAs for a call site, the probability of
correctly guessing the return address is given by ﬁ. R%C’s
additional code randomization (see Section 4.3) means that
an attacker cannot reliably infer the address of the calling
function based on a leaked return address. As a result, leaked
return addresses are only useful to locate gadgets for a ROP
chain. When using n return addresses to construct a ROP
chain, the success probability for locating all n return ad-
dresses decreases to (ﬁ)". For example, with ten BTRAs
the probability of successfully finding four return addresses
is (£)* ~ 0.00007.

7.2.2 Function Pointers. R’C protects function pointers
on the stack and in the data section with stack slot shuf-
fling and global variable shuffling, respectively. R*C’s ad-
ditional code randomization (see Section 4.3) ensures that
such pointers cannot be used to locate gadgets, effectively
forcing the attacker into a more constrained whole-function
reuse setting. An attacker can learn function pointers from
either the stack, the heap, or the data section. Due to ASLR
the location of the data section is unknown to the attacker
a priori. Leaking a function pointer from the data section,
therefore, requires a leaked data section pointer first. Even
if an attacker manages to disclose a function pointer that
satisfies the criteria for whole-function reuse, global variable
shuffling frustrates efforts to locate and manipulate AOCR’s
default function parameters.

7.2.3 Leaking Heap Data. The attacker can try to leak
data from the heap to either learn function pointers or point-
ers leading to the data section. As ASLR randomizes the
heap’s location, leaking data requires either a heap pointer
or a heap over-read vulnerability. Although R%C does not
protect against leaks from a heap over-read, it does, how-
ever, impede the disclosure of heap pointers with BTDPs.
The probability of correctly guessing a benign heap pointer
among all heap pointers depends on the number of benign
heap pointers H, and the number of BTDPs B per function.
The probability of randomly picking a benign pointer is %.
The exact number for H is application specific and depends,
for example, on the number of registers containing heap
pointers that are spilled to the stack. B on the other hand is a
random variable with a uniform distribution that depends on
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R?C’s parameters (see Section 5.2). With an expected value of
E(B), each stack frame will contain E(B) BTDPs on average.
A leak of S stack frames, thus, contains B = E(X) % S BTDPs.
BTDPs also increase the risk of detection for attackers trying
to locate the heap through random memory probes.

Alternatively, an attacker could try to identify events
where BTDPs do not mimic their benign counterparts accu-
rately. For example, by performing heap feng shui an attacker
might be able to identify benign heap pointers with a known
distance to each other [63]. Note, however, that such an
attack requires specific prerequisites and goes significantly
beyond the analysis steps of the demonstrated AOCR attacks.

Even if an attacker achieves a heap leak through a heap
pointer or a heap over-read, we believe that leveraging a
heap leak is challenging, considering that (i) scanning large
contiguous areas of the heap might hit one of the guard
pages used for BTDPs (see Section 5.2); (ii) finding suitable
function pointers for a whole-function reuse attack within
the leaked window is difficult (see Section 7.2.2).

7.2.4 Exception handling and stack unwinding. As
part of the BTRA setup and teardown code, R?C also emits
the necessary CFI directives to support exception handling
and stack unwinding. CFI directives record stack pointer and
frame modifications in the .eh_frame section. Entries in
the .eh_frame are not, however, associated with function
symbols, but with Program Counter (PC) ranges. These PC
ranges are unknown to the attacker due to code layout ran-
domization. An attacker cannot, therefore, associate entries
in the . eh_frame table with functions.

The position of an entry in the table—i.e., its row—could
provide the attacker with important information. Each entry
in the table, reflects the position of a function in a compi-
lation unit. Through function reordering/permutation row-
based references become invalid. Since exceptions occur in-
frequently, one could also use a more expensive protection
scheme, such as encryption, to protect these meta-data.

7.2.5 Corrupting code pointers. Code-reuse attacks typ-
ically corrupt entire code pointers. An attack called Position-
Independent Code Reuse (PIROP) generalizes this principle
by corrupting only parts of code pointers and, as a result,
is immune to ASLR and page-level randomization [31]. R2C
impedes a PIROP attack in two ways. First, R°C shuffles
functions and randomizes at the sub-function level (see Sec-
tion 4.3), thus increasing the entropy for PIROP. Second,
BTRAs constrain candidate PIROP gadgets that manipulate
(partial) return addresses: In the presence of BTRAs a PIROP
attack needs to corrupt all return addresses, requiring either
iterative gadget execution or more complex gadgets.

7.3 Remaining attack surface

At present, R%C remains susceptible to two types of brute
force attacks. In a Blind ROP scenario with restarting worker
processes, an attacker could use PIROP to brute force the



EuroSys ’23, May 8-12, 2023, Rome, Italy

entropy resulting from R2C randomization techniques. Simi-
larly, an attacker could use the corruption of potential return
addresses as a side channel. For example, by overwriting
selected return address candidates with zero and observing
whether the process crashes, the attacker could learn the
location of the real return address. Both attacks could be
prevented by load time re-randomization. R?C could also
deter the corruption of BTRAs by checking a random subset
of BTRAs for consistency after the return.

R?C focuses on code-reuse attacks and the leakage of
control-flow data. Although R?C’s layout randomization raises
the bar for attackers [36], R>C does not offer the same pro-
tection as defenses specialized for data-only attacks [18].

A way to strengthen R2C’s security would be to com-
bine it with Multi-Variant Execution Engine (MVEE)s [7,
13, 22, 69, 70]. MVEEs and diversification defenses like R2C
naturally complement each other. Considering that R2C di-
versifies along multiple dimensions, an MVEE would detect
data corruption or leakage in one of the variants with high
probability.

7.4 Limitations

7.4.1 Coverage. R?C is able to protect only the call-sites
and functions it actually compiles. BTRAs for calls to unpro-
tected functions are disabled by default as these functions
would overwrite all the BTRAs after the return address. With-
out BTRAs after the return address, the return address would
always be the last address in the list of addresses. Overwrit-
ten BTRAs are only an issue, however, if the attacker knows
which parts of the program have not been compiled by R*C.
Lacking this information, an attacker does not know where
the return address is the last address.

7.4.2 Support for stack argument calling convention
with non-R%C compiled code. At present, our prototype
implementation does not support calling functions with stack
arguments from code not compiled by R2C. This incompati-
bility is due to such functions expecting the caller to prepare
a frame pointer to account for the changed calling conven-
tion. During our evaluation of R?C, we encountered just
three such cases (one in the unit tests of WebKit, one in
the XML parser callbacks of WebKit, and one in the regu-
lar expression implementation of Chromium). With three
cases in 35 million lines of C/C++ code, we conclude that this
combination is rare in practice and, thus, opted for disabling
the emission of BTRAs for the affected functions. Note that
these cases could also be supported by automatically insert-
ing a trampoline for externally visible functions with stack
parameters.

8 Related Work

We group the related work into randomization-based de-
fenses and enforcement-based defenses, the two major strains
of research against code reuse attacks. Table 3 gives an

Berlakovich and Brunthaler

overview of the most closely related work on randomization-
based defenses. Keep in mind, though, that performance
comparison between related work is notoriously difficult,
considering the vastly different benchmarking methodolo-
gies and assumptions.

8.1 Randomization-Based Defenses

Readactor and Readactor++ combine code-pointer hiding
with various randomization techniques and deter brute-force
attacks with booby traps [23, 25]. Crane et al. give a de-
tailed overview of the possibilities of reactive cyber booby
traps [24]. Similar to Readactor and Readactor++, R%C builds
on leakage-resilient diversification and booby traps to de-
ter brute-force attacks. Unlike Readactor and Readactor++,
however, RZC withstands AOCR by protecting pointers on
the stack against profiling. A proposed extension to CPH
protects the trampoline table with cookies against AOCR
whole-function reuse attacks, but incurs a prohibitive per-
formance overhead [46].

R2C requires a secret code layout, as otherwise an attacker
could leak the BTRA setup code. To prevent runtime disclo-
sure of the code layout, execute-only memory presents a
practical solution. Execute-only memory implementations
range from software emulation [6, 12] over destructive code
reads [64, 72] to hardware assisted solutions [12, 25, 30].

In 2017, Pomonis et al. presented a technique called return-

address decoys as part of their kernel JIT-ROP defense, kR"X [56].

As kR"X and AOCR were published in the same year, kR"X
does not focus on the prevention of AOCR, but the idea
behind return-address decoys is similar to BTRAs. Like re-
turn address decoys, BTRAs aim to prevent the disclosure of
return addresses during a code reuse attack. Unlike return
address decoys, however, R?C supports an arbitrary num-
ber of BTRAsS, thus strengthening the security guarantees
against a brute force attack. R%C also is not susceptible to
race conditions (see Section 5.1).

An alternative to preventing the disclosure of the code
layout is to invalidate attacker observations with re-random-
ization. TASR [10], Shuffler [73], and CodeArmor [19] follow
this approach. With TASR, a kernel module re-randomizes
the code layout and updates pointers whenever certain sys-
tem calls are invoked. While effective in principle, the re-
randomization requires a source code analysis that is specific
to the C programming language, limiting TASR’s scalabil-
ity. Instead, Shuffler and CodeArmor introduce abstracted
code locators (table index and shifted addresses), regularly
re-randomize the code layout and translate the code loca-
tors at runtime. In principle, Shuffler’s and CodeArmor’s
code locator translation is similar to Readactor’s CPH and,
thus, susceptible to AOCR. Isomeron also tolerates the dis-
closure of code, but thwarts code-reuse attacks by randomly
switching between two versions of the code on return [26].
Unfortunately, Isomeron’s dynamic binary instrumentation
incurs a significant performance overhead.
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Defense SPEC CPU Overhead (%) C C++ ROP JIT-ROP PIROP AOCR
CodeArmor [19] 6.9%P ° o' ° ° ° o
TASR [10] 2.12b¢ o’ o ° ° ° °
StackArmor [20] 282bd ° o' ° ° ° °
Readactor [25] 6.4% ° o' ° . . o
kR"X [56] n/a* ° n/a* ° ° ° o’
R%C 6.6 — 8.5 ° ° ° ° o °

a  SPEC 2006 d  measures #cycles 3 single decoy; no heap pointer protection
b no C++ benchmarks 1 no support for exceptions 4 not comparable (kernel defense)

¢ comparison w/-0g, perlbench excluded 2  perlbench not working 5  See Section 7.3

Table 3. Comparison of R%C to related diversification techniques.

StackArmor is a binary-only defense against various types
of stack attacks [20]. To mitigate temporal and spatial attacks
on stack objects, StackArmor diversifies the location of stack
frames, isolates vulnerable buffers, and zero-initializes stack
variables. While StackArmor provides comprehensive pro-
tection, it incurs a substantial performance overhead.

Smokestack randomizes the location of stack objects on
each function invocation [5]. In contrast to R?C, Smokestack
focuses on data-only attacks and, therefore, does not ran-
domize the return address.

8.2 Enforcement-Based Defenses

An alternative to randomization-based approaches are en-
forcement-based defenses. A prominent example is CFI [3, 4].
CFI tolerates memory corruptions, but contains the effects
of code-reuse attacks by preventing malicious control-flow
transfers. Burow et al. give an overview of the design space of
CFI [14]. CFI defenses are generally categorized into forward-
edge and backward-edge CFL

Forward-edge CFI relies on the program’s Control-Flow
Graph (CFG) to restrict the targets of indirect branches. Stat-
ically determining the CFG has theoretical limits and leads
to an overapproximation of possible targets [33]. Thus, CFI-
based defenses aim to limit the overapproximation, e.g., by
combining CFI with code-layout randomization [53], by con-
sidering function signatures [68] or by focusing specifically
on C++ [29, 57, 74].

Backward-edge CFI seeks to restrict return branches and
is typically implemented with shadow stacks. Shadow stacks
can be implemented either in software [44, 49, 55] or in
hardware[38, 67] Burow et al. explore the tradeoffs of differ-
ent software shadow stack implementations [15].

CFI generally prevents ROP and JIT-ROP, but its effec-
tiveness against AOCR depends on whether the malicious
control-flow transfers are valid in the approximated CFG.
Note that R2C and CFI are orthogonal defenses and could in
principle strengthen each other.

CCFI enforces CFI and protects against information dis-
closure at the same time by encrypting and authenticating

code pointers [50]. Unfortunately, CCFI incurs prohibitive
performance overheads.

9 Conclusions

As indicated at the beginning, the research community has—
until now—neglected to address the danger emanating from
address-oblivious code reuse (AOCR) attacks.

R2C offers a way out of this impasse, using a methodolog-
ical and systematic way that comprises insights from the
analysis of prior work, novel diversification techniques, and
extensive evaluation. Our results provide evidence of R?C’s
low performance impact, scalability to compile complex, real-
world software exemplified by browsers, and its probabilistic
security guarantees.

Considering our results, R2C contradicts the claim that
AOCR identifies fundamental limits of software diversity.
Instead, we find that AOCR merely identifies the dead end
of focusing exclusively on code diversification, and the ne-
cessity of data diversification.
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A Artifact Appendix
A.1 Abstract

R2C is a novel defense against code-reuse attacks such as
AOCR, and is based on the LLVM compiler framework. The
provided artifacts consist of the source of the compiler as
well as automation scripts to (i) build the compiler; (ii) to
build and run benchmarks. We also provide instructions on
how to use R%C to compile two major web browsers, WebKit
and Chrome. Note that we do not include building Chrome
as an experiment due to its complexity and high resource
demand (see Appendix A.3).

A.2 Description & Requirements

A.2.1 How to access. Our artifact consists of a modified
LLVM compiler suite. We based our modifications on the
LLVM release/11.x branch, commit 1fdec59b. The full
source code repository is available at https://github.com/
fberlakovich/r2c-llvm.

In addition, the benchmarking repository https://github.
com/fberlakovich/r2c-benchmarking contains automation
scripts to

1. fetch and build the compiler;
2. build and run SPEC CPU 2017 benchmarks;
3. build and run webserver tests.

Due to licensing reasons we cannot include the SPEC CPU
2017 benchmark itself.

The benchmarking repository also contains instructions
on how to build web browsers with R?C. For the WebKit
browser, we provide https://github.com/fberlakovich/r2c-
webkit, which contains the sources of the WebKit version
used in the paper and a commit containing the required
patches (see the Section 6.3 and Section 7.4.2 in the paper
for details).

The artifact evaluation was performed with a snapshot of
the benchmarking repository identified by DOI 10.5281/zen-
0d0.7728972, which also contains references to DOISs for the
source code repository and WebKit repository.

A.2.2 Hardware requirements. To build the compiler
and run the benchmark programs (SPEC CPU 2017 and web
servers), you need at least 20GiB of disk space and 16GiB of
RAM, although we recommend 32GiB of RAM.

To build WebKit, you need at least 30GiB of disk space
and 32GiB of RAM, although we recommend 64GiB of RAM.
During compilation, more RAM is generally beneficial be-
cause R?C is not optimized for compilation speed and also
uses LLVM’s LTO feature.

A.2.3 Software dependencies. We require the system to
run Debian 10 or 11. The dependencies for SPEC CPU 2017
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and the web servers are automatically downloaded by our
automation scripts.

The web server benchmarks require a password-less SSH
login to localhost. We provide an example configuration in
the instructions for running the benchmarks.

For the WebKit build a number of Debian packages must
be installed. See the WebKit build instructions for the full
list.

A.3 Evaluation workflow
A.3.1 Major Claims.

1. Our solution successfully compiles and runs all C and
C++ benchmarks of the SPEC CPU 2017 benchmark
suite. This claim is proven by experiment E1. The re-
sult of this experiment (on our servers) is shown in
Figure 6.

2. Our solution compiles and runs Apache and nginx.
This claim is proven by experiment E2. The result of
this experiment (on our servers) is described in Sec-
tion 6.2.4.

3. Our solution compiles and runs the WebKit GTK browser.

The built browser successfully executes the Speedome-
ter benchmark. This claim is proven by experiment
E3. The result of this experiment is described in Sec-
tion 6.3.
Note that for the paper we also built the Chrome
browser. Unfortunately, the Chrome build is not au-
tomated and hard to setup. Apart from the setup, the
Chrome build requires resources likely not present in
commodity hardware. For those reasons, we do not
expect the artifact evaluation committee to repeat the
build steps in reasonable time and, consequently, do
not include the Chrome build as an experiment. How-
ever, we provide build instructions and details on the
exact versions in https://github.com/fberlakovich/r2c-
benchmarking.

A.3.2 Experiments.

Experiment (E1): takes about 15 human minutes and 4
compute hours. In this experiment, the SPEC CPU 2017 bench-
marks are compiled once with full R?C protection. Subse-
quently, a single run of the protected benchmarks is per-
formed. To conduct the experiment, follow the instructions in

README . md at https://github.com/fberlakovich/r2c-benchmarking.

The section “Evaluating functionality” under “Running SPEC
benchmarks” contains instructions on how to run a single
iteration of the benchmarks with R?C protection. This exper-
iment tests the functionality of R2C. Note that conducting
a full performance evaluation with a reasonable number of
iterations (e.g., 10 iterations) requires multiple compute days.

Experiment (E2): takes about 30 human minutes and 1
compute hour. In this experiment, the webservers Apache
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and nginx are built with full R%C protection and the through-
put and latency at different connection counts is recorded.
To conduct the experiment, follow the instructions at https:
//github.com/fberlakovich/r2c-benchmarking. The section
“Running webserver benchmarks” contains instructions on
how to run the throughput tests. To only test R2C’s function-
ality, you can skip the baseline run and overhead calculation
described in the instructions.

Experiment (E3): takes about 30 human minutes and 4
compute hours. In this experiment, the GTK version of the
web browser engine WebKit is built. Subsequently, the built
MiniBrowser is used to run the Speedometer benchmark. To
conduct the experiment, follow the instructions in README . md
at https://github.com/fberlakovich/r2c-benchmarking. The
section “Building WebKit” contains instructions on how to
build the WebKit GTK browser. Once the browser is built,
use the command MiniBrowser https://browserbench.org/
Speedometer2.0/ to visit the Speedometer website.
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