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Abstract. Industrial-scale reverse engineering affects the majority of com-
panies in the mechanical and plant engineering sector and imposes significant
economic damages. Although reverse engineering mitigations exist, economic
damage has not been impacted, indicating that they have failed to address the
problem. A closer investigation shows that industrial-scale reverse engineering
typically only expends efforts on replicating hardware, since software can
often be copied verbatim—no reverse engineering effort required.
We present GlueZilla, a system that binds software to hardware through
user-space rowhammer PUFs. GlueZilla transforms programs such that
they only exhibit their intended behavior on the single machine they are
bound to at compile time. When run on any other machine, the programs
will exhibit a different functionality. GlueZilla relies on unclonable machine
features and thereby forces counterfeiters to not clone just the hardware but
also the software. Cloning both hard- and software drives up reverse engineer-
ing costs, thereby also decreasing the economic viability of industrial-scale
reverse engineering.
GlueZilla works on commodity hardware and does not rely on expensive
hardware components. Our evaluation shows that GlueZilla is effective
and incurs 16% run-time performance overhead in a practical case.

1 Introduction

Estimated at 6.4 billion euros in Germany alone, industrial-scale reverse engineering
poses a significant risk that endangers economic prosperity [34]. Mechanical engineer-
ing companies traditionally invest substantial amounts into research and development,
resulting in high-tech products with correspondingly high premiums. To offset these
premiums and leapfrog lacking prior research and development costs, industrial-scale
reverse engineering has become a billion-dollar business. Based on industry findings,
industrial-scale reverse engineering is financially sound and viable. This financial
viability, however, rests crucially on the costs involved in reverse engineering versus
actual development costs. If stealing intellectual property through reverse engineering
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(d) GlueZilla: An
attacker can neither
run the software on a
cloned device nor eas-
ily reverse-engineer it.

Fig. 1: Overview of different protection modes of intellectual property.

costs less than actual development, then reverse engineering pays off; otherwise actual
development is preferable.

The costs of reverse engineering can roughly be divided into two parts: (i) costs
to reverse-engineer hardware machinery, and (ii) costs to reverse-engineer software
components. At present, most reverse engineering efforts are spent on hardware
components. A fundamental problem favoring industrial reverse engineering prac-
tices is that a machine’s operational software runs on both the original and the
reverse-engineered machine.

Thus, we propose an approach, called GlueZilla, which protects against reverse
engineering of software. In contrast to other protection techniques—such as dongles
or obfuscation [23], whose protective power remains low [3,25]—, GlueZilla also
protects against unauthorized copying of software, as shown in Figure 1. Software
obfuscation thwarts the reverse engineering process but poses no obstacle to software
cloning. Dongles, on the other hand, hinder software running across machines, but
an attacker can clone them or remove the checking mechanism, which enables copies
of the associated software instance to run on any machine.

Forcing industrial-scale reverse engineering companies to reverse-engineer both
hard- and software components increases overall costs, which is the key goal of
GlueZilla. To this end, GlueZilla glues hardware and software together in a
novel, cost-efficient, and effective way. The resulting programs behave differently on
different machines, having an intentional and an unintentional execution mode. Both
modes are fully functional but perform different actions. For each software instance,
there is only one associated machine instance which lets the program run its intentional
execution mode. If the software runs on any other machine, including exact clones
of the associated machine, the program remains in unintentional execution mode.
GlueZilla achieves this goal by way of combining user-space-only, rowhammer-
based [17] physically unclonable functions (PUFs) [13] with techniques borrowed
from software diversity [21]. To the best of our knowledge this combination has not
yet been proposed. Through its unique design, binaries compiled with GlueZilla
need not carry any anti-theft protection techniques, which more often than not help
adversaries during reverse engineering. GlueZilla works on commodity hardware
without the need for expensive hardware components.
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Summing up, this paper makes the following contributions:

– We present GlueZilla, a system that glues software to hardware through
user-space rowhammer PUFs (see Section 6). The resulting glued software poses
substantial obstacles to industrial-scale reverse engineering, thus driving up costs.

– We break with the prevalent hardware-oblivious paradigm of prior software de-
fenses by introducing hardware-dependent software diversification (see Section 7).

– We discuss how our approach secures programs against reverse engineering and re-
port findings of our experimental evaluation of GlueZilla (see Sections 8 and 9).

2 Background

In this section, we describe the fundamentals of our approach, i.e., rowhammer.
Rowhammer is a disturbance error in DRAM modules that allows unprivileged
malicious actors to flip bits in physical memory, including in page frames allocated
to privileged processes [17]. Each DRAM cell stores a single bit of data, whose value
is determined by the charge of the capacitor. Cells naturally lose their charge over
time, so the memory controller periodically recharges all rows to preserve their values.
Because of implicit electromagnetic couplings in the DRAM chip, one can increase
the charge leakage of some memory cells in the chip, i.e., the victim cells, by accessing
a certain pattern of neighboring DRAM rows, i.e., the aggressor rows, at a very high
frequency, called hammering. In the extreme case, the leftover charge in the victim
cell falls below a threshold value and results in a flip of the logical value originally
stored in the victim cell, i.e., a bit flip.

Rowhammer affects most commodity DDR3 and DDR4 DRAM chips [16,24,14],
including high-end ECC RAM [7], and can be reliably exploited. According to Kim
et al., more than 70% of rowhammer-susceptible cells flipped in ten out of ten
iterations on DDR3 [17]. Schaller et al. show that the number of bit flips increases
with temperature, however, the noise level stays constant [29]. Furthermore, the set of
flippable bits depends on variances in the manufacturing process of the DRAM chip.
This makes the set of flippable bits and the rows that contain these bits a unique and
unclonable identifier for the DRAM chip. For this reason, Schaller et al. proposed to
use rowhammer as an intrinsic PUF [29]. Recently, Jattke et al. showed rowhammer-
induced bit flips on one out of ten tested DDR5 modules [15]. They conclude, however,
that more work is required to reliably circumvent modern rowhammer mitigations,
on-die ECC, and higher refresh rates available in DDR5 modules.

After its initial discovery in 2014, several security researchers demonstrated
rowhammer-based exploits, for example to gain kernel privileges [30], extract sensitive
information from a victim VM using a malicious co-hosted VM [5], gain unauthorized
access to co-hosted VMs [27], or to escape from browser sandboxes [8,12,5]. Kwong
et al. even showed that rowhammer can be used as a read primitive to leak sensitive
information of other processes [20].

Most successful rowhammer exploits take three steps. During memory templating,
the attacker constructs a list of vulnerable cells by probing the DRAM [35]. Next, the
attacker loads a virtual memory page of the victim process into a physical page frame
with a vulnerable cell at the desired offset. Attackers commonly resort to memory
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massaging techniques to bring the operating system’s page frame allocator into a
predictable state, and subsequently trigger a page allocation in the victim process.
Finally, the attacker starts hammering the correct aggressor rows and causes the
expected bits to flip in the page of the victim process’s page.

3 Rowhammer Properties

In this section, we lay out a number of properties of the rowhammer effect, which we
will later use as building blocks for stealthy, machine-aware computations. In the past,
rowhammer was primarily used for targeted exploitation, because it allows stealthy
cross-process memory modifications. Apart from this property, the rowhammer effect
has many other interesting properties, including:

1. Unclonable and unique bit flip pattern Whether a DRAM cell is suscep-
tible to rowhammer or not depends on many uncontrollable variations during
the manufacturing process of the DRAM chip. The distribution and sensitivity
of rowhammer-susceptible memory cells is, therefore, unclonable and practically
unique for large memory regions.

2. Bit flips in the full memory range Rowhammer-susceptible cells and their cor-
responding aggressor rows are distributed throughout the whole physical memory.
This allows programmers to use rowhammer to perform intra- and inter-process al-
terations of code and data. Inter-process bit flips, in particular, are well documented
in the literature on rowhammer attacks.

3. No static knowledge of victim cell locations For many rowhammer patterns,
one can deduce the victim row based on knowledge of the location of the aggressor
rows. For example, in the single-sided, double-sided, one-location, many-sided, and
half-double hammer patterns, the victim rows are located next to the aggressor
row(s) [17,30,11,18,9,28]. However, the precise location of rowhammer-susceptible
cells is still unknown because it can be any variation of the 65,536 bits in the row
(assuming a DRAM row is 8 KiB long). In more complex hammer patterns, e.g.,
non-uniform hammering [14], one cannot even deduce the precise location of the
victim row(s).

4. Bit flip success depends on execution speed If the aggressor accesses happen
too slowly, e.g., because the CPU executes different instructions (of any process)
in between, the victim cells will not lose enough charge in between row refreshes,
resulting in no bit flips.

5. Bit flip information isolated from OS and CPU Bit flips in memory happen
directly in DRAM without memory write instructions. They are the result of
successive memory reads to different locations in physical memory. The OS and
CPU are, therefore, unaware of any modifications in memory due to bit flips. One
important consequence is that the OS will not trigger any faults, for example,
when flipping bits in pages mapped as read-only or pages that are mapped in
another process’s address space.

We introduce the idea of using these rowhammer properties for purposes other
than exploitation. Schaller et al. already explored the application of property 1 to build



GlueZilla: Efficient and Scalable Software to Hardware Binding 5

a rowhammer PUF [29]. Properties 2 and 5 allow programs to make modifications to
any process, including their own, without the OS or the CPU noticing. These proper-
ties, furthermore, enable a new form of self-modifying code, even in non-writable code
pages. Due to property 3, the static image of the binary does not contain any direct
information on which modifications are performed at run time. These properties limit
the amount of information one can extract from the static image about the run-time
behavior. Properties 4 and 5 frustrate several dynamic analysis techniques.

4 Case Study: GlueZilla

We now present GlueZilla4, a new approach to prevent software theft by binding
a software instance to a single associated machine instance. Hackers who engage
in industrial-scale reverse engineering specialize in creating replicas of expensive
pieces of machinery, including their software. Currently, these hackers spend most of
their efforts on reverse engineering and copying the machine’s hardware components.
Once they have copied these components, they can run the original machine’s soft-
ware on the replica machine as-is. GlueZilla can make reverse engineering much
more difficult and costly by forcing hackers to reverse-engineer the hardware and
subsequently modify the original software before it can run on a copied machine.
One of the unique properties that sets GlueZilla apart from most traditional
hardware-software binding mechanisms in use today (e.g., those that use dongles or
trusted platform modules (TPMs)) is the stealthiness of the interaction between the
GlueZilla-protected software and the hardware it is bound to. Whereas protected
user-space software interacts with dongles and TPMs over well-defined and easily
identifiable interfaces, GlueZilla-protected software uses standard memory access
instructions that can hide in plain sight.

The protection system we present in this section is just one implementation of our
hardware-software binding approach. This implementation does not offer bulletproof
protection, as we will show in Sections 8 and 10. GlueZilla is vulnerable to attackers
who can create full-memory snapshots directly on a machine that runs the associated
software instance.

5 Threat Model

For this case study, we make the following assumptions about the host system, the
attacker, and the protected applications.

We assume the host system uses commodity rowhammer-susceptible DRAM mod-
ules. Related work shows that this includes most of the DDR3 and DDR4 DRAM
modules in use today [16,24,14], including those that use ECC [7]. Given the fact that
no general rowhammer mitigation exists as of yet [7,9], we consider this a realistic
assumption.

We assume the protected application is a user-space program, deployed on a
machine that is part of industrial machinery, such as an assembly line. We consider an
4 https://github.com/COMET-DEPS

https://github.com/COMET-DEPS
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Fig. 2: GlueZilla generates a memory template on the target device and compiles
the protected program such that all developer-specified junction instructions can
be loaded into rowhammer-susceptible DRAM cells at run time.

attacker performing industrial espionage, i.e., aiming to obtain a copy of the binary
image of the protected software, for example, by stealing it from the storage of a
genuine machine or by intercepting software updates. The attacker is, furthermore, able
to acquire or create machine clones that meet the same specifications as the original
machine. They will, however, show different results compared to the original machine
when querying physically unclonable components, such as the DRAM modules. The
attacker’s goal is to deploy fully functional copies of the protected software on clones
of the original machine. The attacker does not have access to the original source code.

6 GlueZilla: Overview and Design

Overview GlueZilla programs contain two functional operation modes: an inten-
tional execution mode and an unintentional execution mode. The intentional execution
performs the original, intended purpose of the program. The unintentional execution
performs actions differing from the intended purpose without obvious signs that some-
thing is wrong with the program, e.g., program crashes. These two operation modes
only differ at unsuspicious-looking program points. For example, a branch condition in
the intentional execution could be inverted in the unintentional execution, or a call in
the intentional execution to one function could be changed to a call to another function
in the unintentional execution. If chosen specifically so as to not arouse suspicion, it
becomes difficult for an attacker to distinguish unintentional from intentional behavior.
Reliable distinction of both behaviors requires expert understanding of the software’s
intentional behavior. Adversaries typically lack this knowledge since gaining this
knowledge is the primary reason for reverse engineering the program in the first place.

Once our GlueZilla compiler has built the protected GlueZilla program, it
executes the unintentional behavior by default. The program uses rowhammer-induced
bit flips to switch to its intentional execution mode at run time. GlueZilla leverages
several of the rowhammer properties we laid out in Section 3 to implement the run-
time switch from the unintentional to intentional execution mode. Property 2 allows
GlueZilla to use rowhammer-induced bit flips to morph the unintentional code into
the intentional code. For the transition to intentional code to be successful, the pro-
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tected program requires specific bits to flip. Due to property 1, the desired bit flip pat-
tern is unclonable and only present at the associated machine for which we compiled the
software instance. This ensures the intentional execution mode is only reconstructed
on this physical machine. The static binary image, furthermore, does not contain any
information about the intentional code, as explained by property 3. Finally, property 5
states that the CPU does not explicitly perform the required memory modifications.
There is, thus, no need for any unstealthy branching instruction inside the protected
program itself that conditionally reconstructs the intentional code. As explained in
property 5, these memory modifications also work in non-writable code pages.

Design Conceptually, GlueZilla operates in several phases shown in Figure 2 that
are required to create binaries glued to a specific hardware instance, as described above:

1. Pre-Compilation Phase:
(a) Memory Templating Stage: In this stage, we gather information about the

specific location of bit flips in the physical memory of the target device.
(b) Junction Instruction Selection Stage: A junction instruction is a pair that

consists of (i) the original, intentional instruction, and (ii) its unintentional
instruction counterpart. During this stage, the compiler selects suitable pairs,
either automatically through random selection or manually.

2. Compilation Phase: In the compilation phase, the compiler fuses the information
of the memory templating with the selected junction instructions. Since both
instructions and possibly even functions need to be put into specific locations, the
compiler needs to perform advanced code scheduling techniques.

3. Load Time Phase: Before we can execute a program, we need to perform the
required memory massaging at load time. This phase ensures that all required
physical page frames from user space are allocated. Then, we load all of the code
pages into the expected page frames.

4. Run-Time Phase: Rowhammering is used on junction instructions, such that the
program’s control flow is diverted from unintentional to intentional execution mode
on the target device.

7 The Implementation of GlueZilla

In this section, we describe the previously mentioned phases in greater detail.

7.1 GlueZilla Memory Templating

Our approach requires a priori information about the behavior of rowhammer on the
target device. We gather this information by measuring the rowhammer-susceptibility
of the device’s physical memory using a number of hammer patterns that are known
to induce bit flips [17,30,11,18,9,28,14]. For all vulnerable cells we discover, we collect
the parameters required to reproduce the bit flip later on, including (i) the physical
address and (ii) the bit index of the vulnerable byte, (iii) the corresponding aggressor
row addresses, (iv) the hammer pattern, and (v) the flip direction. We repeat this
scan several times to assess the repeatability of each bit flip. Our memory templater
and additional analysis tools consist of approximately 3,500 lines of C++ code.
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int a = 42;
if(a != 5) {
  ... }

Junction Instruction:
Unintentional Form 

Junction Bit

0b10000100

 c7 45 ec 2a 00 00 00  mov    [rbp-0x14],0x2a
 83 7d ec 05           cmp    [rbp-0x14],0x5
 0f 84 <offset>        je     <offset>

Junction Instruction:
Intentional Form 

 c7 45 ec 2a 00 00 00  mov    [rbp-0x14],0x2a
 83 7d ec 05           cmp    [rbp-0x14],0x5
 0f 85 <offset>        jne    <offset>

0b10000101

Intentional Program

1 2

Unintentional ProgramUnintentional
Source Code

Fig. 3: At run time, GlueZilla uses rowhammer to transform junction instructions
from their unintentional into their intentional form.

7.2 GlueZilla Junction Instruction Selection

Junction instructions define the points where the intentional and unintentional ex-
ecution of the program differ. The effort to reverse-engineer the protected program
increases with greater difference between both execution forms and, therefore, the
number of junction instructions. Selecting these instructions is hard to automate
because we want to ensure that these differences are not obvious to reverse engineers.
We want to guarantee that the program is not actively harmful, even when it executes
its unintentional code.

An additional challenge lies in the sparse distribution of rowhammer-susceptible
cells across the DRAM. In practice, this distribution limits us to a single bit flip per
junction instruction. We refer to this bit as the junction bit. Fortunately, if chosen well,
flipping one bit in a few junction instructions often suffices to make the intentional
and unintentional executions of a program differ substantially. This is especially true
on architectures with dense instruction sets (e.g., x86). On such architectures, there
are many valid machine instruction sequences that differ in only one bit from several
distinct sequences with different semantics. The individual instructions in the new
interpretation of the sequence can have a different encoding length as long as the
total sequence is still valid, i.e., the bit flip did not introduce invalid instructions in
the code sequence. This allows us to create a different control flow (e.g., by changing
loop predicates, jump or call targets, etc.) and data flow (e.g., by changing arguments,
constants, etc.) between the intentional and unintentional executions.

We classify junction instructions w.r.t. their position-related constraints into the
following two classes:

1. Unmovable junction instructions (U-JI) only require that their junction bit be
aligned with a suitable rowhammer-susceptible DRAM cell. Figure 3 illustrates an
unintentional je instruction, which becomes an intentional jne instruction after
the bit flip 2 . This instruction should be placed into a DRAM cell in which we
can flip bit 0 of the instruction.

2. Movable junction instructions (M-JI) create inter-instruction placement constraints.
Figure 4 illustrates an unintentional call to foo, which becomes an intentional
call to bar after the bit flip 2 . If we choose bit index 8 of the second byte of
the branch target operand as our junction bit, the target changes from 0x1000
to 0x1100 during the run-time transition from the unintentional to the intentional
execution mode. This puts a relative placement constraint on the two call targets
(foo and bar) as they must be exactly 0x100 bytes apart.
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 void foo() {
   ... }
 void bar() {
   ... }
 int main() {
   foo();
   ... }

2

Unintentional Source

 e8 00 11 00 00  call <bar>
 ...             ...
 <foo>
 ...
 <bar>
 ...

Destination:
PC + 0x1100

Contains
Junction Bit

Intentional Program

0xffb
0x1000

0x2000

0x2100

0x1001

Contains
Junction Bit

 e8 00 10 00 00  call <foo>
 ...             ...
 <foo>
 ...
 <bar> 
 ...

Destination:
PC + 0x1000

Unintentional Program

0xffb
0x1000

0x2000

0x2100

0x100

Fig. 4: Junction bits inside control transfer destinations add constraints to the relative
position of the destinations.

To select junction instructions, we explored an automatic and a manual operation
mode. The automatic operation mode selects a provided number of unmovable and
movable junction instructions randomly and uniformly across the binary. This mode,
however, provides no guarantee about the behavior of the software on cloned machines.
It may, in the worst case, cause harm to the machine, or its environment. Instead of
ignoring such a security-critical scenario, we also support a manual operation mode.

In manual operation mode, we rely on a developer to modify their source code
to unintentional form and keep track of the changed instructions, i.e., the junction
instructions. To facilitate this task, the developer can construct the unintentional
behavior by adding subtle alterations to the existing control and data flow graph of
the intentional behavior. To increase the number of available alterations, a developer
can perform semantic-preserving transformations, such as data structure or function
parameter permutation.

7.3 Compiling GlueZilla Binaries

The transition from intentional to unintentional execution mode only works if we
can position the program’s code in physical memory such that every junction bit is
stored in a rowhammer-susceptible DRAM cell. This poses several challenges:

Challenge 1: Bit Alignment Machine instructions are aligned to byte boundaries
in physical memory. Thus, if the X-th bit within a junction instruction is a junction
bit, then it is only possible to store this bit in the Y -th cell of a DRAM row if X
and Y are congruent modulo 8 (i.e., X≡Y (mod 8)).

Challenge 2: Page Alignment For practical reasons, and although not strictly re-
quired, code pages within a program binary should be aligned to page boundaries when
loaded into virtual and physical memory. This means that if a junction instruction is
at page offset X within a code page of a program binary, said instruction can only be
stored at byte offset Y in a page frame if X and Y are congruent modulo the page size.

GlueZilla: Compiler + Loader We developed a compiler toolchain and a binary
loader to tackle these challenges. To overcome the first challenge, our compiler consults
the memory template of the target device to find candidate cells for each junction
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bit that complies with the required bit alignment. We use this list of candidates to
constrain our layouting passes. These layouting passes assign each code page to a
physical page frame with a suitable candidate DRAM cell, where that page’s contents
must be loaded. We emit information about these assignments alongside the program
binary in the form of a loader map. Afterwards, they apply dead nop insertion and
instruction/basic block reordering [21] to move each junction instruction to the page
offset of the candidate cell, which solves the page alignment problem. We implemented
all logic related to the custom binary layout in the Machine Code (MC) sub-project
of LLVM 11 in almost 1,200 lines of C++ code.

7.4 Loading GlueZilla Binaries into Memory

GlueZilla only works if it can guarantee that every junction instruction is stored
in its intended physical memory cell. However, user-space programs have no direct
control over where their code pages get loaded into physical memory by the operating
system. We tackle this challenge using memory massaging from user space, similar
to prior rowhammer attacks [30,35,27,11,20,28]. In detail, we massage the operating
system’s page frame allocator so we can load every code page that appears in our
loader map into its intended physical frame.

The massaging techniques presented in related work are built for attack scenarios
where the attacker controls the massaging process, and tries to load pages of the
victim process in a specific physical page frame [30,35,27,11,20,28]. These techniques
typically leave a time window between the freeing of rowhammer-susceptible page
frames by the massaging process and the reallocation of said frames by the victim
program. In this time window, the operating system could allocate the desired frame
to other programs running in the background. Most attacks tolerate this probabilistic
behavior, as they typically require only very few rowhammer-susceptible page frames
and one can simply relaunch the attack without anyone noticing.

In contrast, programs protected by GlueZilla might require rowhammer-
susceptible cells in many different page frames and, therefore, probabilistic massaging
is inadequate. To address this challenge, we design a deterministic massaging tech-
nique by performing the massaging step from within the same process whose page
frames we want to hammer. This decision closes the time window, because we do not
have to deallocate frames only to trigger their reallocation in a different process. Our
technique allocates pages until we find all physical page frames in the loader map
and their corresponding aggressors.

We implemented our binary loader and supporting tools in approximately 1,200
lines of Rust code.

7.5 Rowhammering GlueZilla Binaries at Run-Time

After loading all code pages into their associated page frames, we can execute the
program and use rowhammer to transition between execution modes. We flip the
junction bit by rapidly hammering the junction instruction’s corresponding aggressor
rows with the chosen hammer pattern.
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In most cases, this operation works only in one direction: it can transform a
junction instruction from its original unintentional form into its intentional form but
not vice versa. Thus, after executing a junction instruction once, it would remain in
its intentional form until the program stops. However, it is also possible to reverse the
transformation after executing the junction instruction. For example, we could reset the
contents of page frames containing junction instructions by either explicitly reloading
the code from disk or by forcing the operating system’s pager to evict the frame and,
subsequently, page it back in. In this case, we could restore the junction instructions’
unintentional forms, either periodically or immediately after executing them.

Other degrees of freedom lie in the timing of the transition and the placement of
the hammering instructions. We could invoke the transformation at program startup,
just before executing the junction instruction, or anywhere in between. Similarly,
we can invoke the transformation from within the GlueZilla-protected process or
from an external process. By separating the transformation code in time and space
from the junction instruction it transforms, we can increase stealthiness and resilience
against reverse engineering. However, too much separation, especially in time, can
facilitate memory snapshotting attacks, as we explain in Section 10.

While rowhammering, the protected program uses approximately all available
memory bandwidth. To enable a successful transition, no other program running on
the system should consume a significant portion of the memory bandwidth while
the protected program is hammering. Multiple GlueZilla protected programs can
run on the same system simultaneously as long as they adhere to this constraint, i.e.,
they should synchronize their rowhammer-based transitions.

8 Security Evaluation

An attacker can try to reverse-engineer the protected binary to extract secrets or
to remove the machine dependence. We describe two attackers that have access to
increasingly powerful analysis techniques: (i) static analysis and (ii) dynamic analysis
on a cloned machine.

Static Analysis Due to rowhammer properties 2 and 3, the binary is only an image of
the unintentional program and does not contain any direct information about the trans-
formations performed by GlueZilla to transition to the intentional execution mode.

The attacker can perform a differential attack on multiple binary instances that
are compiled for different machines. However, the unintentional behavior and the
set of junction bits are exactly the same for all instances. Only the order of the code
fragments and the amount of padding between them differs. These reorderings do
not provide any information disclosing junction instructions.

By inspecting the loader map, the attacker can learn which page frame is assigned
to each code page. However, due to property 1, the attacker knows neither the
location nor the number of rowhammer-susceptible cells these page frames contain.
Additionally, due to rowhammer property 3, even if the attacker learns the location of
the victim row based on the aggressor rows, they cannot reliably infer which bit flips
are induced by them. Assuming a row is 8 KiB long (65,536 bits), the total number



12 R. Mechelinck, D. Dorfmeister, B. Fischer, S. Volckaert, S. Brunthaler

of possible variations is given by:
∑M

p=1(P
N
p ) with M being the attacker-assumed

maximum number of bit flips in a row and N being the number of bits giving valid
instructions when flipped. Let us assume the compiler emits code fragments with
35% code and 65% nop instructions5 and that 50% of the code bits result in valid
instructions when flipped. On a single channel system, this gives 11,469, 131,537,961,
or 1,508,345,821,725 possible bit flip variations if the attacker assumes a maximum of
one, two or three flips, respectively. For every considered bit flip, the attacker has to
reason about its effect on the program semantics, which is difficult to automate. This
difficulty renders a brute-force attack impractical due to prohibitive time requirements.
When using complex hammer patterns, the victim row is not adjacent to the aggressor
row and bit flips can happen anywhere in the program, providing additional protection.

We conclude that a static adversary cannot obtain sufficient information regarding
the intentional behavior using static analysis alone.

Dynamic Analysis on Cloned Hardware In this scenario, the attacker has
a clone of the software instance and a clone of the machine associated with the
software instance. The protected program is always loaded at the same physical
addresses, dictated by the loader map. Property 1 states that the number and loca-
tion of rowhammer-susceptible DRAM cells are different between any two systems.
Therefore, on a cloned machine, the junction bits will not reside in the required
rowhammer-susceptible cells, leading to either no bit flips or unexpected bit flips. The
attacker, therefore, has no incentive to perform any type of dynamic analysis on this
program execution since they cannot learn anything about the intentional behavior.

9 Empirical Evaluation

We performed our experiments on both DDR3 and DDR4 systems. For DDR3
memory, we used the double-sided hammer pattern to induce bit flips [30]. Due to
the presence of rowhammer mitigations on DDR4, e.g., Target Row Refresh (TRR),
we required more advanced hammer patterns, such as half-double sided hammer-
ing [18], many-sided hammering [9,28], or non-uniform hammer patterns [14]. First,
we evaluated the repeatability of the rowhammer-susceptible DRAM cells and showed
that these can be used as a foundation for GlueZilla. Second, we evaluated the
functionality of GlueZilla by protecting coreutils programs and performance
on the SPEC CPU 2017 benchmark suite.

Bit Flip Repeatability As we require individual bits to flip reliably, we must ensure
a high repeatability. In several experiments conducted on multiple DRAM/machine
combinations, a share of rowhammer bit flips is highly reliable, i.e., flips in all tests,
under specific operating conditions.

For example, Figure 5a shows the results of two rowhammer experiments, executed
using the same 54 MiB of consecutive DDR3 memory of vendor B. Per experiment, we
executed 1,000 iterations of a double-sided rowhammer test, with the only difference
5 Average size overhead for 100 junction instructions in SPEC CPU 2017 (see Section 9)
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(b) Non-uniform pattern on DDR4 DRAM

Fig. 5: Bit flip repeatability with 1,000 iterations per flip direction. Each dot
represents a bit flip at a specific location in DRAM. They are grouped by their bit
index within the respective directly addressable byte.

being the initialization of the victim and aggressor rows so that we can find bit flips
in both directions (0 → 1 and 1 → 0). While some bit flips occur in a very small
number of tests, which can be considered as noise, several bits flipped in all iterations
and thus are suitable for use in GlueZilla. Figure 5a shows that there are several
reliable bit flips for each bit index in both flip directions.

We executed the same experiment on DDR4 memory of vendor A, although for
just 800 KiB of consecutive memory and using a Blacksmith-generated non-uniform
hammer pattern. Since DDR4 is more susceptible to bit flips than DDR3, the smaller
memory area was sufficient to induce a comparable number of bit flips. As evidenced
by the results shown in Figure 5b, the results align with the ones obtained for DDR3.
In consequence, we find that both DRAM types offer sufficiently reliable bit flips.

Among other factors, temperature and aging can influence the repeatability of
rowhammer bit flips [17,29,24,33,4]. We do not consider these factors in this paper
and want to refer to future work for possible error correction mechanisms.

Functionality Evaluation To evaluate the practicality of GlueZilla, we applied
GlueZilla to the coreutils programs ls and cp. We constructed an uninten-
tional behavior for both programs and used the manual operation mode described
in Section 7.2 to select the junction instructions.

For cp, we made the unintentional variant of the program delete rather than
copy the source file. We implemented the unintentional behavior by modifying:

– Two function signatures to add an extra pointer indirection for some arguments.
– The struct layout of two structs to put common fields at the same offset.
– A function call that serves as movable junction instruction with the remove func-

tion as unintentional destination and the copy function as intentional destination.

For ls, we built the unintentional behavior by adding disruptive operations to
the intentional behavior so it does not print the current directory correctly. We
implemented this behavior by adding:

– A conditional function call that increments the pointer to the element to print. The
condition always evaluates to true, so the unintentional form effectively skips an en-
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Fig. 6: Performance impact of GlueZilla on SPEC CPU 2017.

try in each iteration. This condition functions as an unmovable junction instruction
in which we flip an operand, so it evaluates to false in the intentional execution.

– A time dependence that jumps over the print code between 3 p.m. and 6 p.m.
This jump is a movable junction instruction with the print code as intentional
destination and the code thereafter as unintentional destination.

– An increment of two bytes to the char pointer pointing to the current entry’s name.
Each entry will thus miss the two starting letters in its name. The increment
instruction is an unmovable junction instruction in which we flip the constant
from two to zero.

We performed this experiment on both a DDR3 and a DDR4 system. For each
system, we took two different DRAM modules that contain rowhammer-susceptible
cells of which one is associated with the program by the GlueZilla compiler. At
run time, we verified that the intentional execution is only unlocked on the associated
module while on the other module the program performs its unintentional execution.

Performance Evaluation Our current prototype performs all massaging and ham-
mering at program launch, so these steps only add overhead when the protected
program starts. The start-up overhead heavily depends on the current state of the
memory allocator. For the average case, when most of the required page frames are
free, this takes about 2.7 seconds for a program requiring about 1,000 page frames.

At run time, the custom binary layout adds performance overhead because of
reduced cache utility due to reduced code locality. We evaluated this overhead on all
C benchmarks of the SPEC CPU 2017 benchmark suite (we omit C++ benchmarks
as our prototype does not currently support C++ exceptions). Our machine has an
Intel Core i7-2600 CPU and runs Fedora 39 with Linux 6.6. We used four DRAM
modules with 12 GiB of DDR3 memory in total, operating at 1333 MT/s. To reduce
interference with other processes, we disabled SMT, turbo boost and isolated one core
to which we pinned the protected program and set the scaling governor to performance.

For each benchmark, we used the automatic operation mode, which selects a
provided number of unmovable and movable junction instructions randomly and
uniformly across the binary. This mode allows us to measure the effect of the custom
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layout on large quantities of junction instructions. Furthermore, we defined the un-
intentional form equal to the intentional form so we do not require the rowhammer
step in our layout-related overhead measurements.

Figure 6a shows the run-time performance overhead of binaries containing 100
uniformly distributed junction instructions, each requiring one junction bit. We di-
vide these in unmovable and movable junction instructions in three configurations,
represented by the three bars per benchmark. For each configuration, we ran three
experiments per benchmark program, each with a different set of junction bits and
report the geometric average. Figure 6b shows the overhead when 1% of all machine
instructions in the binary are junction instructions. This setting is the maximum
amount of junction instructions we could select with a memory template containing
about 200,000 rowhammer-susceptible DRAM cells.

Our current compiler prototype does not yet take into account any optimization
regarding code placement and alignment, cache prefetching and utilization, branch
probabilities, etc. It may even deteriorate the optimizations performed by earlier
compiler passes, resulting in an almost worst-case overhead. This explains why both
figures show a relatively high impact for the modified binary layout. However, in the
realistic scenario of 100 junction instructions, the run-time performance overhead is
limited to 16%. The geometric average of the size overhead of all benchmarks over
the three configurations is 185% for 100 junction instructions and 843% when 1%
of all instructions are junction instructions.

We investigate these results using the hardware performance counters available
in our benchmark machine. In our experiments using 100 junction instructions, all
measured performance loss is caused by a variety of effects related to suboptimal code
layout, including instruction cache misses, iTLB misses, and CPU frontend stalls. For
519.lbm_r, however, we found that almost all overhead is caused by branch resteers in
the CPU frontend. 519.lbm_r is the smallest benchmark program and only includes
around 1,800 assembly instructions that fit on three 4 KiB pages in the baseline
binary. Adding 100 junction instructions to these small binaries results in many small
code fragments, often containing only one or two assembly instructions separated by
large amounts of padding. To fit the spare distribution of rowhammer-susceptible
cells in physical memory, the padding can be multiple KiB long. As suggested by
Godbolt, this greatly underuses the available entries in the branch target buffer (BTB)
leading to many branch mispredictions [10]. We found that the protected program had
approximately 12,000 times more branch resteers compared to the baseline version.
During a branch resteer, the branch address calculator updates an entry in the
BTB that caused a branch misprediction or misidentification and restarts instruction
fetching. These additional resteers account for 10% of all reference clock cycles.

In our experiments where 1% of all instructions are junction instructions, we
found that more benchmarks are affected, albeit not as much as 519.lbm_r with 100
junction instructions, by branch resteers, most notably 500.perlbench_r, 502.gcc_r,
525.x264_r, and 531.deepsjeng_r. 519.lbm_r in these experiments only has approxi-
mately 18 junction instructions (1% of its 1,800 assembly instructions) and, therefore,
has less run-time overhead compared to our evaluation using 100 junction instructions.



16 R. Mechelinck, D. Dorfmeister, B. Fischer, S. Volckaert, S. Brunthaler

10 Discussion

Implementation Limitations Our prototype presented in Section 7 only focuses
on the functional requirements and, therefore, has some limitations related to security
and performance.

We choose to construct the required binary layout during the compilation phase,
because all necessary information is available at this stage. This approach, however,
results in large binaries of which a large portion is nop padding. Alternatively, we
could put each page in a separate ELF segment and directly load it in the assigned
page frame. This approach only has intra-page padding but requires more information
to transfer between the compiler and the linker.

The padding also identifies the edges of each code fragment which either contains
a single junction instruction or is the destination of a movable junction instruction.
This information slightly narrows down the adversary’s search space for junction in-
structions, which makes it easier to reconstruct the intentional program. For example,
the attacker can identify a potential intentional destination when it is preceded by
a large amount of padding in the unintentional binary. Subsequently, they scan the
unintentional binary and match all target addresses of direct jump instructions with
the address of the potential intentional destination. If both addresses differ only in
a single bit, the adversary can with great certainty assume the jump is a movable
junction instruction with the identified code fragment as its intentional target.

We can eliminate this attack by limiting the attacker’s capability to identify
potential intentional targets based on the left-over intra-page padding. One approach
is to substitute the padding with dead code or with used code that does not have any
positional constraints. In both cases, it should not be obvious where the substituted
padding ends and the intentional target starts by making the substituted padding
as benign looking as possible, for example:

1. Whenever the padding ends with a return instruction, there should be a function
symbol associated with the succeeding code, i.e., the intentional target.

2. If the padding ends with an unconditional jump, the padding should also include
(dead) jumps to the succeeding code.

3. When the padding consists of dead code, we can include apparent data dependencies
between the dead padding code and the intentional target’s code.

4. If the padding consists of used code, we can include data dependencies delimited
by an opaque predicate between the padding and the intentional target.

Our prototype requires access to the Linux pagemap, for which we launch the
program with sudo and later switch to an unprivileged user. Because this is bad
security practice, we could leverage a kernel module that exposes a memory massaging
interface limited to the memory of the current process. Such an interface would not
give new capabilities to the attacker because it provides the same functionality as
massaging from user space with the information in the loader map.

To reduce run-time overhead, we could define the binary layout problem as an opti-
mization problem to increase code locality. The optimization variables include: the size
and order of the code fragments, the location of the junction instruction within the frag-
ment, and the selection of the rowhammer-susceptible cell w.r.t. its page frame offset.
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Because we merely want to demonstrate the general idea of using rowhammer for
stealthy computations, we rely on the developer to manually analyze the code base
and select enough junction instructions (see Section 7.2). This could be an enormous
effort depending on the desired level of protection, i.e., the distance between the
intentional and unintentional form. Automating this process requires multiple anal-
yses, including a syntactical analysis of the source code to explore neighboring valid
candidate programs, and a semantical analysis to evaluate the conspicuousness of each
candidate and guarantee the safety for machine and environment of the unintentional
form. Automation gets easier if we relax the conspicuousness requirement and allow,
for example, program crashes or infinite loops without dangerous side effects. In this
case, we could select condition statements as junction instructions.

Reliability In Section 9, we showed the existence of rowhammer-susceptible cells
that flip reliably in all our tests. However, we cannot guarantee 100% reliability
because the rowhammer effect is still a hardware disturbance error and numerous
factors might undermine the reliability, e.g., hardware aging and interference with
other running software. The intentional execution is not fully reconstructed in case
some junction bit does not flip as expected.

To maximize reliability, we assume the software and hardware vendor do not
include any constructs that actively counteract our rowhammer-based program transi-
tions. These include advanced error correction codes for memory transactions, which
could correct the bit flips in junction instructions, or anti-tamper protections, which
could detect changes in the executing program code.

As many industrial systems are considered critical, our approach might need
additional measures to increase reliability. For example, we could leverage multiple
distinct junction instructions to enable each functionality change, rather than just one.
Whether the changed functionality is enabled at run time then depends on whether
the majority of its junction instructions flipped.

In the absence of suitable error correction mechanisms, our method is still applica-
ble to non-critical applications. An alternative approach is to make the intentional and
unintentional execution functionally equivalent but make the unintentional form run
less optimally. We could achieve this, e.g., by using less optimal algorithms, using more
system resources, and requiring more user input. This way, the program will always ex-
ecute its critical behavior, but it will only execute efficiently on the associated machine.

For systems demanding absolute reliability and with no room for occasional
suboptimal code execution, the software vendor may find a different, potentially
weaker, protection approach more suitable.

Potential Attacks and Further Mitigations So far, we have assumed that the
reverse engineer cannot run analyses directly on a coupled software and hardware
pair. This assumption is in line with our threat model and is not unrealistic given
that industrial machinery is often locked down using software-based access control
mechanisms and physical sealing. However, given that no protection mechanism is
perfect, we now discuss which types of attacks the adversary could attempt given
full and unrestricted access to an associated device.
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One threat that immediately comes to mind is Dynamic Binary Translation
(DBT). An attacker could learn about the protected program’s behavior by running
it in a tool such as Valgrind to dynamically add instrumentation code or to monitor
interesting features such as the execution trace, data dependencies, etc. DBT tools
preserve neither the input program’s binary layout nor the intended mapping between
virtual pages and physical memory frames. Therefore, DBT tools would be unable to
observe the intended bit flips and thus give the attacker very little useful information
about the intentional behavior.

Layout-preserving Dynamic Binary Analysis (DBA) tools or debuggers could resort
to hardware features such as performance counters, processor tracing, or hardware
breakpoints to analyze an instance of the protected program. These tools can,
theoretically, observe transitions between the unintentional and intentional execution
modes. However, due to property 5 of rowhammer, detecting these transitions is
difficult because there are no obvious, dedicated instructions that explicitly modify
the code. At best, the adversary could detect the rowhammering code based on its
signature, i.e., a sequence of memory read instructions and a cache line flush of the
same address and observe the program’s memory afterwards. Prior work, however,
already explored numerous other stealthy rowhammer primitives, for example, using
non-temporal and implicit loads, uncached memory regions, and cache eviction
sets [26,12,1,2,35,37,38]. These techniques remove the visual clues that prompt the
adversary to inspect the code pages for bit flips. The attacker can, at best, check for
bit flips at regular time intervals. If this interval is big, the attacker risks missing many
bit flips, while a small interval is very time-consuming and will frustrate the attacker.

Another problem with DBA tools and debuggers is their performance impact.
Due to property 4 of rowhammer, analysis tools cannot meaningfully interfere with
the memory controller while the protected program executes its transition code. Even
minimal interference could slow down the protected program to a point where the
transition fails.

One particularly dangerous threat that would be successful against our current
prototype is memory snapshotting. Given that our implementation only supports one-
time transitioning from the unintentional to intentional execution mode immediately
after the program starts, the attacker could simply create a full-memory snapshot
when the program reaches its original entry point. This snapshot would show the
junction instructions in their intentional form. We could defend against this attack
by making the program transition back and forth between its unintentional and
intentional execution mode (see Section 7.5).

Attackers could perform their own templating step using the full set of rowhammer
parameters (e.g., the aggressors, the hammer pattern, and access counts and speeds)
they extracted from the binary. Using the loader map, they could identify the junction
instruction that gets loaded into a rowhammer-susceptible cell. We can mitigate this
attack by inserting many bogus hammer sequences that either flip unimportant bits
or no bits at all. With a sufficiently high number of genuine and bogus hammer
sequences, this attack becomes a time-consuming and costly endeavor.
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11 Related Work

To the best of our knowledge, there is no directly related work. Thus, we explore the
two closest concepts, physically unclonable functions and software diversity.

Physically Unclonable Functions Physically Unclonable Functions (PUFs) are
hardware primitives that provide component-specific responses to user-provided chal-
lenges [32,13]. PUFs derive their responses from physical hardware characteristics that
are extremely difficult to clone and that are expected to be unique because they stem
from the many random variations in the hardware’s production process. Over the past
two decades, researchers have proposed several uses for PUFs, including identification
and authentication [32], cryptographic key storage [31,22], and hardware-software
binding [19,36]. Using PUF-based encryption of data or code for obfuscation purposes,
however, is less stealthy than GlueZilla because all queries to the PUF and the
encryption operations are visible and prone to dynamic analysis.

Schaller et al. first proposed a rowhammer PUF in 2017 [29]. They validated
the PUF’s uniqueness and robustness and showed that its entropy is high enough to
derive cryptographic keys from. Their design uses a fixed memory area and requires
a kernel module for PUF interaction. GlueZilla’s design, on the other hand, can
operate at any location in physical memory, has no fixed memory size requirement,
and does not need a kernel model to safeguard the reserved memory area.

Software Diversity A side effect of our approach is that it results in a form of soft-
ware diversity [6,21]. Modern software diversity addresses the problem of the software
monoculture by generating a unique version of a program for each user. GlueZilla,
however, requires specific locations for the junction instruction in memory and, there-
fore, generates a unique binary layout for each associated machine. Furthermore, the
prevalent paradigm in software diversity is to be hardware agnostic [21]. GlueZilla
is, to the best of our knowledge, the first system breaking with this paradigm.

12 Conclusions

We present GlueZilla, a system that binds software to hardware to prevent industrial-
scale reverse engineering. To this end, we combine new compile-time transformations
on the software side with DRAM PUFs on the hardware side.

Through GlueZilla, a program now has two different modes of operation: an
intentional and an unintentional mode. The intentional mode requires the correct bit
flips at the correct locations. The unintentional mode executes the program in its
statically encoded representation.

We present the relevant design decisions and implementation details for a fully-
fledged GlueZilla prototype. Our evaluation shows that the performance impact of
GlueZilla depends primarily on the required number of instructions to modify by
bit flips. Although prohibitive performance impact may arise in some configurations,
we find that these occur only in compute-intensive programs of the chosen benchmark
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suite. Software in our target area of industrial computing systems, however, is typically
not compute-intensive. As a result, we expect negligible to moderate performance
impacts in the target environment.

Our security evaluation shows that the software bound to hardware by GlueZilla
poses significant obstacles to reverse engineering. Reverse engineering based on static
analysis is frustrated by software diversity, amplified by not knowing which candidate
instructions will be modified by rowhammering. Reverse engineering based on dynamic
analysis is frustrated by both not having a hardware environment with identical bit flips
and not knowing when all of the program’s candidate instructions have been modified.
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