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Abstract
Coverage-based fuzzers track which program parts they visit when

executing a specific input as a proxymeasure to (1) guide the fuzzing

process, and (2) explore the Program Under Test (PUT)’s state space.

One way to record coverage progress is to enumerate basic block

pairs (i.e., edges in the control-flow graph) and use them to index

into a hash table that holds counters. The counter is incremented

every time a fuzzer’s input exercises the corresponding edge. Tra-

ditionally the coverage map has been a compact bitmap that fits

the L2 CPU cache to reduce runtime overhead and boost fuzzing

throughput. In such a design where space is traded for speed, two

sources of imprecision can arise: (1) collisions, and (2) arithmetic

inaccuracies.

Collisions refer to the situation when two different basic block
pairs hash to the same entry. Imprecision arises since one pair is

now counted together, but the fuzzer cannot tell one apart from the

other.

Arithmetic inaccuracies refer to errors in the counting strategy.

For example, a monotonically incrementing counter inside the hash

table can overflow. This indicates a situation where high-frequency

control-flow exceeds the predefined, expected maximum counter

size (e.g., in loops). Due to execution frequencies obeying exponen-

tial power laws, such overflows will affect a small number of hash

table entries. Another arithmetic inaccuracy results from range-

based counters that capture only predefined frequency intervals

(e.g., logarithmic counters).

In 2018, CollAFL examined how collisions impact precision, and

presented a new hashing scheme to reduce the number of collisions.
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CollAFL did not address the problem of arithmetic inaccuracies. Fur-

thermore, CollAFL considered only a single-core virtual machine, a

limited set of benchmark programs, and did not explore hardware-

specific effects (e.g., cache utilization for concurrent fuzzing pro-

cesses).

This registered report aims at providing new insights of how

collisions and arithmetic inaccuracies affect coverage tracking for

fuzzing. We propose experiments for multiple hardware architec-

tures with different cache topologies, and a more diverse set of

benchmark programs. Leveraging the evaluation data, our aim is

to determine precise architecture-aware settings for AFL++. Further-
more, we plan to demonstrate an adaptive optimization strategy
that optimizes the coverage map w.r.t. to collisions and counting

strategies for a specific combination of the CPU architecture and

PUT.
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1 Introduction
Coverage-guided fuzzers have shown to be useful for identifying

vulnerabilities in complex software. This type of fuzzer records

coverage of the Program Under Test (PUT) for specific inputs to

determine more effective seed scheduling andmutation. Well known
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representatives of coverage-based fuzzers derive from AFL, such as

aflpp [6].

Both AFL and AFL++ record coverage by (1) instrumenting the

PUT, and (2) supplying a data structure to keep track if a seed

reaches a certain program point. The instrumentation step (usu-

ally) adds recording instructions into the lowest level of compound

program structure: basic blocks. The recording data structure is

commonly referred to as a coverage map. To reduce the overhead
from instrumentation and coverage tracking, the coverage map has

been traditionally kept small so that it fits the L2 CPU cache (e.g.,

64 KB in AFL’s initial design [20]).

Fuzzing research of the past decade has focused primarily on

improving the seed scheduling and mutation stage using coverage

data [2, 5, 9, 13]. This focus did not, however, address the shortcom-

ings in coverage recording, namely imprecision due to collisions
and arithemtic inaccuracies.

Collision imprecision refers to the problem of having multiple

program locations index into the same coverage map recording

slot. Such a collision leads to imprecision because the fuzzer cannot

separate multiple different program locations by only considering

the counts inside the coverage map slot.

Arithmetic inaccuracies refer to the problem of the counting

strategy. Consider, for example, a recording slot size of one byte.

Exceeding the execution count of 255, the recorded count value will

overflow back to zero. Such a collision leads to imprecision because

the fuzzer cannot reliably tell which input parts were executed

more or less often modulo the 256 countable executions.

Figure 1 illustrates both sources of imprecision on a conceptual

coverage map data structure. We note, however, that in the general

case and depending the coverage type, a certain degree of impreci-

sion is inherent to every fuzzer. If a fuzzer were to track detailed

coverage of every possible control-flow and data state, fuzzing

would reduce to (bounded) model checking [3]. The problem then

becomes tracking coverage optimally—reducing imprecisions (e.g.,
collisions and arithmetic inaccuracies), and maintaining high fuzzing
throughput.

Summing up, this paper makes the following contributions:

• We analyze existing implementations for coverage recording

mechanisms in AFL and AFL++. Our analysis focuses specif-
ically on highlighting existing mechanism’s impotence to

prevent both collision and arithmetic imprecision.

• We devise a set of experiments aimed at identifying and
quantifying the imprecision of both sources in real-world

programs.

• We present results of a preliminary study that shows as much

as half of a PUT’s coverage map slots can overflow (e.g., 49.5%

for zlib).
• We propose a detailed evaluation across multiple hardware

architectures to (1) highlight shortcomings, and (2) identify

ideal parameters for each hardware architecture (e.g., w.r.t.

CPU cache utilization).

2 Background
This section briefly explains (1) how AFL [20] and AFL++ [6] imple-

ment coverage-guided fuzzing, and (2) what Link-time Optimiza-

tion (LTO) is.
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Figure 1: Overview of hash-collisions (A-B and C-D in orange)
and an arithmetic inaccuracy stemming from counter over-
flows (E-F and F-E in blue) in coverage recording techniques.

2.1 Coverage-Guided Fuzzing
Fuzzing refers to the idea of subjecting programs to randomly gener-

ated inputs [13]. The program is commonly referred to as a Program

Under Test (PUT). In principle, a fuzzer can follow a brute-force

approach, i.e., just randomly generate an input and feed it to the

PUT. An existing body of research, however, shows the effectiveness

of using an adaptive, feedback-driven approach. Among several

alternatives, coverage has shown to be a useful feedback-channel.

By instrumenting a PUT to record the execution of its basic blocks,

fuzzers use coverage to (1) guide the testing process, and (2) explore

the PUT’s state space. For example, the recorded information allows

the fuzzer to correlate individual inputs with the PUT’s state space,

and thus control the mutation process.

Fuzzers instrument a PUT through inserting coverage record-

ing tasks into a PUT at compile-time (cf. Section 3). Alternatively,

AFL++ [6] provides a way to use FRIDA to instrument basic blocks

in a binary-only mode
1
, or LTO mode to instrument at link-time.

2.2 Link-Time Optimization
Real-world software today comprises multiple compilation units,

i.e., object files that are compiled separately and then linked to-

gether. Separate compilation and subsequent linking pose an obsta-

cle to both optimizing compilers and fuzzers.

Optimizing compilers cannot perform so-called whole-program

optimizations, as the program in its entirety is only known after
linking. Modern compilers, such as LLVM, address this issue by

1
https://github.com/AFLplusplus/AFLplusplus/blob/stable/frida_mode/README.md
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providing a so-called LTO infrastructure
2
[8, 11]. Using LTO, LLVM

can, for example, detect unused functions and perform dead-code

optimization across all compilation units.

Fuzzers face a related problem: For efficient indexing into the

coverage array, each basic block would need a strictly monotonic,

unique identifier that can be used as index. Such identifiers are

only possible, however, by enumerating all basic blocks of a PUT.

But how can the compiler enumerate the basic blocks of a PUT, if

separate compilation is used?

One could, instead, generate a non-monotonic but unique iden-

tifier for all basic blocks during compilation (e.g., a pseudo-random

identifier). The downside of this approach is that the hash func-

tion that computes the index into the coverage hash-table becomes

expensive, thereby needlessly slowing down PUT execution. In ad-

dition, the exact size of the coverage hash-table is only known at

link-time.
By compiling with LTO, however, the compiler is able to deter-

mine the number of basic blocks. This number allows the compiler

to skip the hashing part and instrument with more efficient ar-

ray indexing instead. In addition, the exact size of the coverage

hash-table is known, enabling the fuzzing system to adjust its space

requirements.

3 Problem Statement and Motivating Example
3.1 Original Approach Taken by AFL
AFL’s technical description whitepaper contains the following snip-

pet to illustrate coverage recording [20]:

cur_location = <COMPILE_TIME_RANDOM >;

shared_mem[cur_location ^ prev_location ]++;

prev_location = cur_location >> 1;

With the additional detail given that shared_mem corresponds to
a 64 KB memory chunk. The motivation for such a small chunk is

that it fits perfectly inside the L2 cache of a CPU. The purpose of the

right-shift operation in the last line is to preserve the direction of

control-flow transfers. Because the XOR operation (ˆ) is symmetric,

the direction between two basic blocks 𝐴 and 𝐵 is identical, i.e.,

𝐴⊕𝐵 ≡ 𝐵⊕𝐴. By shifting the current location by one bit to the right,
however, the direction 𝐴 → 𝐵 is preserved: 𝐴 ⊕ 𝐵↠ . 𝐵 ⊕ 𝐴↠.

Recognizing collisions. By providing a list of hash collisions,

Michał Zalewski already notes that they can and do occur. Specifi-

cally, Zalewski notes that the collisions increase with increasing

numbers of branch points. At 50,000 branch points, the number of

collisions rises to about 30%.

Frequency counter imprecision. Overflows are also possible in

the original AFL implementation and depend on the elementary

datatype of the shared_mem array. Interestingly, Zalewski already
points this out:

The absence of simple saturating arithmetic opcodes

on Intel CPUs means that the hit counters can some-

times wrap around to zero. Since this is a fairly un-

likely and localized event, it’s seen as an acceptable

performance trade-off.

2
https://llvm.org/docs/LinkTimeOptimization.html

Note that the issue of overflows is related to the issue of collisions.

If two edges use the same coverage map slot due to a collision, they

also increase the same frequency counter. As a result, the exact

frequency of each edge is blurred.

3.2 Advancements by AFL++
3.2.1 Context-Sensitive Compile-Time Instrumentation. AFL++ adds
the option to add context to the coverage information. For example,

call-context sensitivity adds information about the functions on the

stack to the existing edge coverage.

map[

current_location_ID

^ previous_location_ID >> 1

^ hash_callstack_IDs

]

+= 1;

The corresponding documentation gives the following explana-

tion:

Basically every function gets its own ID and, every

timewhen an edge is logged, all the IDs in the callstack

are hashed and combined with the edge transition

hash to augment the classic edge coverage with the

information about the calling context.

So if both function A and function B call a function

C, the coverage collected in C will be different.

The callstack hash is produced XOR-ing the function

IDs to avoid explosion with recursive functions.

Besides call-context sensitivity, AFL++ can also approximate path-

sensitivity via its n-gram instrumentation [6]. For example, in a

4-gram setting AFL++ will not only track a single basic block, but

also its three predecessors.

On one hand context sensitivity allows AFL++ to explore new

PUT states. On the other hand, however, it increases the pressure

on the coverage map, and thus increases the likelihood of more

collisions. Consider, for example, a function 𝑓 in a given PUT. If 𝑓 is

called from twenty different call sites, it will require twenty times

more slots in the coverage map.

Note that other instrumentations, not necessarily implying con-

text sensitivity, also increase the pressure on the coverage map. For

example, the LAF-INTEL transformation
3
breaks down composite

multi-byte comparisons to simple single-byte comparisons. Thus it

increases the number of edges in the control-flow graph, and the

number of used slots of the coverage hashmap.

3.2.2 Larger Coverage Map to Reduce Collisions. The default pa-
rameter of shared memory allocation to hold the coverage map

in AFL++ is set to eight megabytes
4
. This means that eight million

bytes can be stored in the coverage map and that 23 bits are required

to address a single byte in the coverage map.

Due to the pigeonhole principle, if a program has more than eight

million edges, collisions must occur. Because AFL++ uses context-
sensitive optimizations (see above), a program with fewer edges

could already lead to collisions.

3
https://lafintel.wordpress.com/

4
See, for example, the get_map_size procedure in afl-common.c and

DEFAULT_SHMEM_SIZE in config.h.
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Specifically, the AFL++ developers state the following (N.B. em-

phasis copied from original source):

This issue is underestimated in the fuzzing commu-
nity.With a 2

16
= 64kb standard map at already 256

instrumented blocks, there is on average one colli-

sion. On average, a target has 10.000 to 50.000 instru-

mented blocks, hence the real collisions are between

750-18.000!

AFL++ contains additional comments regarding coverage map

size:

Most targets just need a coverage map between 20-

250kb. [...] Hence afl-fuzz deploys a larger default

map. The largest map seen so far is the xlsx fuzzer

for LibreOffice which is 5MB.

AFL++’s git repository dates this commit
5
to March 17th, 2021. Be-

fore this commit the amount was set to 1 MB, instead of the now

standard 8 MB.

However, a too large coverage map reduces the fuzzer’s through-

put (cf. Section 6). The reason is that the map can no longer fit

the CPU cache, which leads to frequent cache misses while track-

ing coverage. Thus the fuzzer’s bookkeeping runtime overhead

increases, and its throughput declines.

3.2.3 Preventing Overflowing CountersWrapping to Zero. If a counter
in the coverage map overflows, it will automatically wrap to zero.

As a result, if there is no follow-up incrementation before the PUT

terminates, the fuzzer will fail to register the exercized state(s). To

prevent this from happening, AFL++ does not only increment the

counter by one, but also adds the carry bit
6
. As a consequence

overflowing counters in AFL++ wrap to one.

Nevertheless, even non-zero, overflowing counters still lead to

missed states due to high execution frequencies (e.g., in loops, cf.

below). Interestingly, AFL++’s authors attempted to implement sat-

urated counters that freeze at their maximum value before over-

flowing. However, because of the additional branching, their per-

formance overhead was found to be too high [6, Section 3.3].

3.2.4 Buckets vs. Overflows. So far we have only considered sim-

ple counters that are monotonically incremented by one. AFL and
AFL++ implement an alternative approach, so-called buckets. Buck-
ets group frequencies into ranges and store only whether the ex-

ecution frequency lies within a certain interval (e.g., logarithmic

counters). The assumption behind buckets is that, especially for

larger frequencies, small differences in frequency should be irrele-

vant.

Buckets are an improvement over a naive counter as they reduce

the number of overflows. However, they still have issues. Buckets

lose precision with larger execution frequencies. For example, AFL’s
default implementation does not differentiate execution counts of

200 and 2000.

3.2.5 Link-Time Optimization. As mentioned in the background,

the precise number of basic blocks is not known until link-time.

AFL++, thus, offers to use LLVM’s LTO interface to enumerate all

5AFL++ commit 5e2a5f1110e29c36f1c41fb4677ab698c5d571c0
6
See skip_nozero in afl-llvm-pass.so.cc for the implementation, and NeverZero
in the documentation [6, Section 3.3].

basic blocks at link-time. By using this information, for a given PUT

we can create a perfect hashmap, free of static collisions.

Even in the face of LTO-based coverage map optimization, three

problems remain. First, even though a minor issue, not all software

is readily amenable to use an LTO-build process. Libxml2, for exam-

ple, does not currently buildwith LTO enabled. Second, imprecisions

due to arithmetic inaccuracies (e.g., overflowing counters) remain

unaffected by coverage map size optimization. Third, collision-free

only refers to edge coverage based on basic block identifiers. Po-

tential collisions due to path-sensitivity approximation, such as

call-context sensitivity, remain an open issue. For example, AFL++’s
LTO collision-free instrumentation cannot handle indirect proce-

dure calls, thus completely missing PUT states resulting from such

calls
7
.

3.3 Problem and Impact
In summary, coverage-guided fuzzers, by an example of AFL++, lose
precision in coverage tracking due to (1) collisions in the coverage

map, and (2) arithmetic inaccuracies in how the hit counters are

managed.

First, a coverage map large enough to hold every control-flow

edge must not necessarily eliminate all collisions (cf. Section 4). For

example, the hash function could capture additional context, e.g.,

procedure calls. Furthermore, large coverage maps could negatively

impact the fuzzer’s throughput as they no longer fit the CPU cache.

Additionally, AFL++’s link-time instrumentation is collision-free

only w.r.t. basic-block edges and direct procedure calls. Specifically,

AFL++’s LTO is incomplete, as it fails to register call-context sensi-

tivity for indirect calls (this information is fully available only at

runtime).

Second, arithmetic inaccuracies, specifically imprecise range

buckets and overflowing counters (even if not wrapping to zero),

lead to the fuzzer missing PUT states. For example, hot code, such

as loops, becomes blurred to the coverage tracking. How significant

such PUT state misses are is an open research question (see also

Section 5). We can expect that the impact depends on the fuzzer’s

scheduling strategy. However, even a single bit missed from the

coverage map can mean a potentially wrongfully discarded test

case
8
.

Accordingly, the problem becomes tracking coverage optimally—

reducing imprecisions, and maintaining high fuzzing throughput.

4 Preliminary Results
Even though not up to date, related work already provides data

about the problems collisions in a small coverage map can cause

(cf. Section 3.1 and Section 6). Here we present the results of a

preliminary study we conducted about the presence of (1) arith-

metic inaccuracies, and (2) collisions purely because of the hashing

function, given a pratically infinite coverage map.

7AFL++ uses a fork of LLVM’s SanitizerCoverage for its LTO implementation (cf.

SanitizerCoverageLTO.so.cc).
8
See save_if_interesting, has_new_bits, and has_new_bits_unclassified
in afl-fuzz-bitmap.c. Also see update_bitmap_score and cull_queue in

afl-fuzz-queue.c.
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Figure 2: Percentage of counter overflows in AFL++’s coverage
map, using OSS-Fuzz’s corpora for the given Program Under
Test (PUT).

4.1 Synopsis
Specifically, we measure the number of overflows in the jsoncpp,
libpng, and zlib PUTs accumulated by oss-fuzz’s saturated cor-

pora, whereby we maximize each coverage map’s size to correct

for collisions. We find that 21.4% of jsoncpp’s slots overflow, for
libpng 15.2%, and for zlib 49.5% respectively (cf. Figure 2).

Furthermore, 2.8% of jsoncpp’s slots wrap back to zero (or one)

because of the overflow. For libpng the wraps are 1.2%, and for

zlib 1.4% respectively.

In addition, we measure the number of collisions and their or-

der (cf. Figure 3 and Figure 4). We find that in 100% of the cases,

jsoncpp and zlib have at least one collision. For libpng, this is

98%. Additionally, we observe, for example, that libpng has up to

5 colliding items per slot. However, most of the collisions (≈ 50) are

of order 2.

Below we discuss in greater detail the experiment and what the

results imply for the next phase of our research.

4.2 Methodology and Implications
First, we download the latest saturated corpora for all three PUTs

from oss-fuzz. For that we run a local oss-fuzz experiment and

set oss-fuzz-corpus: true in the configuration. Note this allows

us to take advantage of a dataset generated by different fuzzers in

hundreds of CPU hours
91011

.

Second, we build an instrumented version for each project, to-

gether with its corresponding fuzz driver. For the instrumentation

we use SanitizerCoverage12 to record each edge and the total

number of basic blocks.

9
https://introspector.oss-fuzz.com/project-profile?project=jsoncpp

10
https://introspector.oss-fuzz.com/project-profile?project=zlib

11
https://introspector.oss-fuzz.com/project-profile?project=libpng

12
https://clang.llvm.org/docs/SanitizerCoverage.html
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Figure 3: A violin plot summarizing the relationship between
number of colliding items per slot and their order in a cov-
erage map of maximum size for each examined PUT. For
example, a single fuzzing execution for jsoncpp can lead to
up to 28 slots where 2 different edges collide.

Figure 4: Detailed breakdownof slot collisions in the coverage
map of zlib.

Third, we execute each instrumented PUT with all of its input

files from the corpus, and record the corresponding execution trace.

We compress large traces with lz4 to prevent running out of storage
space.

Finally, we analyze each execution trace, and emulate AFL++’s
coverage tracking with a coverage map big enough to store each

basic block pair in its own entry. During the analysis we keep a

list of each hit in a map’s entry. At the end, lists longer than 255

indicate counter overflows, as the coverage map is a byte array.

Figure 2 depicts the final result.

We count the coverage map collisions using a chaining method

to keep track of the collisions. At the end we calculate every chain’s

length.
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Interestingly only 15.2% of libpng’s slots and almost half of

zlib’s overflow. Due to time constraints we have not analyzed

the exact reason for such a distribution, but plan to do in the next

phase (cf. Section 5). However, a cursory examination reveals that

zlib has a longer critical path that utilizes loops, whereas libpng’s
critical path is largely linear.

Our experiment does not contain enough PUTs for its results to

be representative. However, it suggests that there could be a PUT-

specific adaptation for the coverage map, such that the overflows

are reduced (e.g., larger slots for hot code such as loops).

Furthermore, it is not yet clear what the exact impact of over-

flows is w.r.t. coverage precision and fuzzer performance. In ad-

dition, in this experiment we have eliminated overflows due to

collisions, as we maximized the coverage map’s size. However, this

assumption is not realistic, as this would penalize performance in

real-world fuzzing campaigns. In the next section we design a set

of new experiments to shed light on these questions and better our

understanding about coverage tracking.

5 Methodology and Research Questions
In this section we (1) describe the questions we plan to investigate

in the second stage of our research, (2) outline a workplan, and

(3) design the required experiments.

At the core of our study are two research questions:

• How much precision does a coverage-guided fuzzer lose be-

cause of inaccuracies in its coverage tracking (i.e., collisions,

arithmetic inconsistencies)?

• How much performance does a fuzzer lose if we improve its

coverage tracking precision?

We note both questions contain multiple degrees of freedom, and

thus require several experiments. For that reason, we divide each

question in multiple, smaller, more easily to address subproblems.

Furthermore, we organize our experiments in two groups—one

for studying the imprecision (cf. Section 5.4), and one for addressing

the performance (cf. Section 5.5).

Before we detail each experiment, we describe the common

components in our setup—the target hardware systems, software,

and dataset.

5.1 Evaluation: Target Hardware Systems
The coverage map is for performance reasons a cache-sensitive data

structure. Furthermore, CPU caches are property of the microar-

chitecture. For example, cache size and whether a cache bank is

shared among CPU cores varies with the microarchitecture. Thus,

for our experiments we plan to use 12 different systems from 3

instruction set architectures (RISC-V, ARM, and x86_64) and diverse
cache topologies (cf. Table 1).

The systems range from more constrained (e.g., middle-class 32-

bit embedded systems) to desktop machines with high single-core

performance (e.g., i7, and i9 CPUs), and server systems with multi-

core packages and larger cache sizes. Our motivation for choosing a

diverse set of evaluation hardware is twofold. First, slower devices

with less cache should be more sensitive to smaller changes in the

coverage tracking mechanism, thus making the analysis of results

easier. Similarly, CPU architectures with distributed topologies am-

plify effects when fuzzing in parallel (e.g., separate fuzzer instances

compete for shared caches). Second, results that are consistent

across multiple different devices are more likely to be representa-

tive.

5.2 Evaluation: Software Setup
To reduce variability in our experiments because of software differ-

ences, we equip all machines (see Table 1) with standard Debian
12, without virtualization and without patching the kernel.

Furthermore, we will use exclusively AFL++13 and its LLVM14 in-
strumentation backend. However, depending on the experiment

(see below), we propose to examine AFL++’s behavior under differ-
ent configurations. When required, we patch AFL++ accordingly.

As part of our final, stage-two publication, we will make all

source code, data, and documentation available to the public to

facilitate open and reproducible research.

5.3 Evaluation: Dataset
We select 90 PUTs from oss-fuzz, representing 15 groups of user-
space programs with different demands and programming patterns

(cf. Table 2). For example, numerical code and media codecs are

expected to have tight CPU-bound parts. On the other hand, I/O

should dominate in PUTs from the network and database categories.

Furthermore, parsers and programming language systems require

fuzzing inputs to satisfy complex syntax and semantic constraints.

We note all PUTs have AFL fuzzing drivers, and are written in ei-

ther C or C++. Additionally, our dataset is a superset of FuzzBench’s
[14].

Besides the abovementioned dataset, we also take advantage of

the SPEC CPU 2017 benchmark to study the performance impact

of different coverage strategies (cf. Section 5.5).

5.4 Research Questions and Experiments:
Imprecision

Here we propose an evaluation aimed at understanding how colli-

sions and arithmetic inaccuracies impact coverage precision. To this

end, we first need to identify sources for both types of imprecision.

Once identified and understood, we will be in a position to analyze

under which circumstances collisions and arithmetic inaccuracies

occur, and also measure the extent to which these errors propagate

throughout the fuzzing process.

With these goals in mind, we propose the following research

questions.

Q.1 Where and how many collisions occur?

Q.2 Where how many, and what arithmetic inaccuracies occur?

Q.3 To which extent do collisions affect precision?

Q.4 To which extent do arithmetic inaccuracies affect precision?

5.4.1 Calibrating AFL++. To investigate the abovementioned prob-

lems, we undertake the following changes on AFL++. At the begin-
ning, we set AFL++’s coverage map’s size to 2 GB to correct for

collisions
15
. Next, we change the coverage counters to monotoni-

cally increasing unsigned 64-bit slots. Then, as for our preliminary

13
Commit db23931e7c1727ddac8691a6241c97b2203ec6fc, dated July 24, 2024.

14
with LLVM version 18

15
Our preliminary analysis shows that 2 GB is enough for our PUTs.
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Table 1: Hardware systems planned for conducting the experiments. Abbreviations: p.c.—per core, sh.—shared. The Apple M3
Maxmachine has 12 performance and 4 low-powered CPU cores, and its shared caches are grouped in clusters.

Machine Architecture CPU Model Cores Threads L1 L2 L3 RAM Storage

apu4d4 x86, 32 bit AMD Embedded BX-412TC, 1.00 GHz 4 4 32 KB p.c. 2 MB sh. - 4 GB 128 GB SSD

visionfive2 RISC-V, 64 bit StarFive JH7110, 1.50 GHz 4 4 32 KB p.c. 2 MB sh. - 8 GB 1 TB NVMe

quartz64 ARM, 64 bit ARM Cortex-A55, 2.00 GHz 4 4 32 KB p.c. - 512 KB sh. 4 GB 1 TB NVMe

celeron x86_64, 64 bit Intel Celeron N2820, 2.41 GHz 2 2 56 KB p.c. 512 KB p.c. - 4 GB 240 GB SSD

nuc8i7 x86_64, 64 bit Intel i7-8559U, 4.50 GHz 4 8 64 KB p.c. 256 KB p.c. 8 MB sh. 64 GB 1 TB SSD

i9 x86_64, 64 bit Intel i9-9900K, 5.00 GHz 8 16 64 KB p.c. 256 KB p.c. 16 MB sh. 64 GB 1 TB SSD

xeon x86_64, 64 bit Intel Xeon 8358, 3.40 GHz 32 64 64 KB p.c. 1 MB p.c. 48 MB sh. 256 GB 3.2 TB NVMe

ryzen x86_64, 64 bit AMD Ryzen 7 3700X, 4.40 GHz 8 16 256 KB p.c. 4 MB p.c. 32 MB sh. 64 GB 1 TB NVMe

epyc x86_64, 64 bit AMD EPYC 7H12, 3.30 GHz 64 128 96 KB p.c. 512 KB p.c. 256 MB sh. 1 TB 3.2 TB NVMe

threadripper x86_64, 64 bit AMD Threadripper 3970X, 4.50 GHz 32 64 64 KB p.c. 512 KB p.c. 128 MB sh. 128 GB 1 TB NVMe

ampere ARM, 64 bit Ampere Altra, 3.00 GHz 80 80 64 KB p.c. 1 MB p.c. 32 MB sh. 512 GB 3.2 TB NVMe

m3max ARM, 64 bit Apple M3 Max, 2.75 - 4.06 GHz 12/4 16 192/128 KB p.c 16/16/4 MB sh. - 128 GB 1 TB NVMe

Table 2: Dataset for the (precision) experiments. All programs
are part of oss-fuzz and have AFL fuzzing drivers.

Category Program Samples (PUTs)

Programming Language Systems

ruby, wasmedge, wasm3, quickjs, php,
mruby, lua, cpython3, janet

Database Systems duckdb, sqlite3, postgresql

Cryptographic Libraries

wolfssl, openssl, mbedtls, bearssl,
boringssl, libsodium, libressl

Network Libraries

curl, libpcap, openthread, libssh,
libssh2, libtorrent

Web/HTTP Servers

apache-httpd, nginx, lighttpd,
mongoose, h2o, uWebSockets

Network Daemons dovecot, openssh, dropbear
JSON jq, cjson, jsoncpp, json-c, boost-json

XML

tinyxml2, pugixml, libxslt, expat,
libxml2, xerces-c

Compression Libraries

lz4, lzo, xz, zlib, zstd, zopfli, unrar,
miniz, minizip

Video & Codecs

ffmpeg, wavpack, vorbis, vlc, openh264,
mpg123, libmpeg2

Images

libpng, libspng, libtiff, imagemagick,
libjpeg-turbo

Numerical Algorithms xnnpack, llamacpp
Regular Expressions & Lexing re2, flex, wuffs
Fonts woff2, freetype2, harfbuzz

Others

lcms, proj4, systemd, git, libgit2,
utf8proc, libyaml, xpdf, mupdf, md4c,
msgpack-c, nanopb, file, capstone,
keystone, bloaty

results, we keep track of collisions in the coverage map using chain

lists (see Section 4).

5.4.2 Fuzzing Campaign. Subsequently, we execute two fuzzing

campaigns.

First, we fuzz each PUT from our dataset (cf. Table 2) for 24 hours

starting from oss-fuzz’s saturated corpora. Note that although sav-
ing time from a fuzzing campaign, using this corpus leads to more

conservative results. In particular, since oss-fuzz has obtained the
corpus from configurations that potentially suffered collisions and

arithmetic inaccuracies, the finally reached PUT states are under-

counted. Thus we try to correct for undercounting and fuzz for

additional 24 hours, under AFL++’s default setup.
Second, we fuzz each PUT from the dataset for 72 hours without

any initial corpus. This allows us to additionally correct for starting

states that AFL++ missed because of oss-fuzz’s corpus.
Finally, for both fuzzing campaigns, we store each seed and its

corresponding coverage map in the order AFL++ discovered them.

We note that for studying imprecision we can ignore variables

with performance impact w.r.t. execution speed and hardware ef-

fects, such as the cache size. Here we safely ignore the machine

properties as a degree of freedom. However, we correct for the

reduced throughput because of the 2 GB coverage map with longer

fuzzing duration (24 and 72 hours respectively). Additionally, we

use a cluster of epyc machines to speed up the experiment (cf.

Table 1).

5.4.3 Analysis. The collected seeds form our evaluation base w.r.t.
which we can measure what collisions and arithmetic inaccuracies

AFL++ would suffer under different conditions, and what their im-

pact is. More specifically, we identify three degrees of freedom for

our analysis, which we explain below: (1) the coverage map’s size,

(2) the hit counter’s datatype, (3) and additional AFL++’s optimiza-

tions.

To vary the first dimension — the map size — we start from 8

KB and continue in steps of 8 KB until 128 MB. The rationale for

such progression is twofold. First, we want to cover different, but

legitimate L1 through L3 cache sizes. Second, if the jumps between

sizes are too big, we can miss local effects.

Furthermore, different AFL++ configurations can increase the

pressure on the coverage map. Thus, to address the second and

third dimensions — counter’s datatype and AFL++ optimizations —

we identify the following settings:

(1) default AFL++ setup (with NeverZero),
(2) without NeverZero,
(3) 4-gram path sensitivity, and

(4) CmpLog16, i.e., REDQUEEN [2].

Finally, for each possible coverage map size and AFL++ setting,
we compile every PUT, execute it with each seed from its collected

corpus set, and measure:

• The number of collisions and their order (Q.1).
• The number and type of counter overflows, and missed coun-

ters because of bucketing (Q.2). We intend to report the

distribution of hit counters.

• Which and how many seeds would be missed because of

imprecise coverage map either due to collisions, or arith-

metic inconsistencies (Q.3 and Q.4). This metric offers us a

16
https://github.com/AFLplusplus/AFLplusplus/blob/stable/instrumentation/

README.cmplog.md
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conservative approximation of the PUT states AFL++ would
miss in the respective setting.

Besides the quantitative metrics, we also propose a qualitative

macro analysis. Specifically, we intend to trace high frequency coun-

ters to their respective source (e.g., particular program constructs,

such as loops or repeatedly called subroutines).

5.5 Research Questions and Experiments:
Performance and Hardware Dependence

Gaining precision w.r.t. tracking more PUT states costs performance.

Specifically, a larger coverage map and more accurate hit counters

increase the execution overhead. As a result, the fuzzer throughput

suffers:

Q.5 At what performance cost can we track coverage more accu-

rately?

To that end we propose to use SPEC CPU 2017 as a compute-

intensive benchmark to examine the impact of different coverage

maps w.r.t. performance on different CPU architectures. Specifically,

for each of the systems listed in Table 1, we propose to measure

the overhead added to each PUT for coverage map sizes of 16 KB,

32 KB, 64 KB, 128 KB, 256 KB, 512 KB, 1 MB, 2 MB, 4 MB, and 8 MB

under AFL++’s default settings. Using such sizes allows us to cover

approximately all quartiles of the available L1 and L2 caches at our

disposal. We note, however, that during the precision experiments

(see Section 5.4) we might become aware of a better resolution

for the coverage map size, such that it allows us to expose the

relationship between performance and precision more accurately.

The above experiment does not consider overhead to the overall

fuzzing process. For that reason, we also measure the end-to-end

overhead added to a fuzzing campaign using 6 PUTs from our dataset

(see Table 2). More concretely, we measure the number of iterations

AFL++ explores in 24 hours when fuzzing three compute-intensive

(zlib, llamacpp, lua), and three I/O-bound programs (sqlite3,
curl, libpcap). Our hypothesis is that for I/O-bound programs we

should be able to increase precision with less performance penalty.

Furthermore, we plan to study the caching-behavior of the cov-

erage map (specifically, L2 cache utilization). Consider, for example,

whether the bitmap resides at all times in L2 cache or spills to L3

and further:

Q.6 What is the coverage map’s L2 cache utilization?

Finally, we are interested in conflicts stemming from concurrent

fuzzing. For example, L3 cache is usually shared between multi-

ple cores or symmetric multithreads (e.g., hyperthreads on Intel).
When fuzzing concurrently (i.e., we run multiple fuzzing processes

and thus occupy multiple cores), the different fuzzer instances will

run into cache conflicts, thus penalizing each other when collecting

coverage:

Q.7 What is the coverage map’s L3 cache utilization?

To address Q.6 and Q.7, we plan on using perf to inspect during
the above fuzzing campaign where the coverage map resides.

5.6 Hardware and PUT-specific Adaptive
Optimizations

Finally, we propose to leverage the gathered data and implement

adaptive optimization strategies. The previous research questions

enable us to quantify both sources of imprecision (i.e., collisions and

arithmetic errors), and understand hardware-specific effects (e.g.,

cache utilization). Here we want to automatically derive optimal

fuzzing parameters for a given PUT and hardware. To that end, we

hypothesize about the following optimization opportunities:

(1) The fuzzer can automatically select the optimal size for the

coverage map. An optimal choice depends on the hardware’s

cache capacity and the PUT.

(2) Hot code parts, such as loops, might quickly reach the high-

est execution frequency bucket. For these cases, choosing

slots better suited for large frequencies might be profitable

(e.g., 64-bit counters). Likewise, we can save capacity for

the coverage map with bit counters for simple, linear, fall-

through paths.

An AFL++ fuzzing campaign may, therefore, use fine-tuned pa-

rameter settings derived from the PUT, for a specific hardware. Po-

tential improvement could include increased precision and fuzzer

throughput.

6 Related Work
In 2019 Wang et al. survey the different types of coverage metrics

for fuzzing [17]. The authors recognize the need to study the impact

of map collisions on exploring new PUT states.

The work closest to ours is CollAFL [7]. CollAFL is one of the

first papers that systematically analyzes the interplay of coverage

granularity, hash collisions, and fuzzing throughput. The authors

acknowledge the possibility of increasing the coverage map size,

but also show the resulting drop in fuzzing throughput (60% when

increasing the coverage map from 64 KB to 4 MB). As an alternative,

the authors suggest combining different hashing algorithms to

increase the number of guaranteed or at least likely unique coverage

map slots. From a conceptual point of view, CollAFL’s hashing

algorithms approximate the collision-free coverage afforded by

AFL++’s LTO instrumentation (see Section 2.2).

CollAFL’s investigation is an important step in addressing the

issue of coverage imprecision. CollAFL’s evaluation, however, had

a different focus and is, thus, not suitable to fully understand the

relationship between coverage and architectural details. First, Col-

lAFL focuses primarily on hash collisions, but does not investigate

the issue of imprecision due to arithmetic inaccuracies. Second, Col-

lAFL’s evaluation was performed on a single-core virtual machine

with unspecified CPU architecture details, such as the L2 cache size.

As thoroughly discussed in Section 3 and Section 5, the L2 cache

size is an important factor in sizing the coverage map. Third, only

some of the PUTs in CollAFL’s evaluation are CPU bound. We think

that a larger number of CPU bound PUTs needs to be investigated

to understand the effect of hot code, such as tight loops, on counter

overflows. Finally, CollAFL was published before the availability of

fuzzing benchmark suites and coverage precision improvements

such as AFL++’s LTO instrumentation. In our view a reevaluation

with both a more standardized and extensive benchmark set as well

as modern hardware provides new insights.

As we discussed in Section 3, Fioraldi et al. describe AFL++’s LTO
mode, and how the fuzzer tries to mitigate overflowing counters

by wrapping them to one instead of to zero [6].
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In their work from 2023, Xu et al. study the frequency of hash

collisions using AFL in a dataset of seven programs [19]. For this

dataset, Xu et al. find on average more than 70% of the hash colli-

sions are repeated across different seeds. Thus, the authors propose

to eliminate hash collisions in small programs and statically gener-

ate unique identifiers for each edge. How to do this without LTO is

not described. For large programs, the authors propose to rehash

the identifiers to decrease the number of collisions. Xu et al. do not

report data about the overhead their approach induces on AFL’s
throughput. Besides a small dataset, their study does not consider

counter overflows and is conducted on a single machine.

In 2024, Borrello et al. highlight the issue of hash collisions and

execution slowdown caused by context-sensitive coverage tech-

niques [4]. Instead of improving the efficiency of coverage encoding

or enlarging the bitmap, however, the authors suggest a predictive

context-sensitive coverage approach. Their approach implements

context-sensitivity through cloning functions which are predicted

to profit from context sensitivity. The prediction is based on a

dataflow analysis of the function call sites. Our optimizations and

predictive context-sensitivity are mutually beneficial, as a more

collision-resistant coverage map allows for more aggressive context

sensitivity.

CollAFL highlights that naively increasing the coverage bitmap

size is infeasible due to the decrease in fuzzing throughput. To allow

for a larger coverage bitmap without hurting fuzzing performance,

the authors of BigMap propose an indexed, two-level coverage data

structure [1]. The authors show that with increasing bitmap sizes,

fuzzers spend a considerable amount of time with analyzing the

bitmap after each test run. BigMap improves over AFL’s bitmap by

allowing the analysis to focus only on parts that have changed in

last test run. We think that BigMap and our envisioned architecture

and PUT-specific optimizations are mutually beneficial.

In a work from 2019, Wang et al. analyze different coverage

metrics, such as variants of branch coverage or memory-access

aware coverage [18]. The paper introduces a new metric called

sensitivity that allows to compare the ability of coverage metrics to

differentiate program states. The authors find that more sensitive

coverage metrics or even a combination of them indeed leads to

an improved bug-finding performance. As more sensitive coverage

metrics typically produce more coverage data, they profit from

faster access and fewer collisions.

FuzzTastic is a tool for obtaining more accurate coverage re-

ports [12]. The combination of collisions and fuzzers keeping only

seeds that lead to new coverage can lead to imprecise coverage

reports. In their paper, the FuzzTastic authors quantify this effect

and propose an alternative, LLVM-based coverage instrumentation

that guarantees more accurate reports.

UnTracer and HeXcite, a generalization to more powerful cov-

erage metrics, show the power of coverage-guided tracing [15, 16].

Coverage-guided tracing adaptively enables coverage recording

only at the frontier of the currently known coverage, leading to a

several orders of magnitude higher fuzzing throughput. In a similar

way, we propose adaptive coverage hash functions to reduce the

number of hash collisions.

In their work from 2018, Hsu et al. propose to instrument only

certain basic blocks for tracking coverage, primarily to reduce the

performance impact on the fuzzing process [10]. A side effect of this

optimization is that collisions are also reduced. Similar to our last

research question (cf. Section 5), this approach is also PUT-adaptive.

7 Conclusions
This preregistered report proposes two mutually dependent lines

of work.

First, we propose to experimentally analyze how coverage-based

fuzzers, exemplified by AFL++, lose precision while tracking PUT

states. Specifically, we plan on analyzing the effect of coverage map

collisions and arithmetic inaccuracies (e.g., overflows and range

counters). For this reason, we identify the degrees of freedom, and

pose four research questions. As a result, we design a set of ex-

periments to run on 12 different systems across 3 instruction set

architectures (x86_64, ARM64, and RISC-V), and different bench-

mark programs.

Second, we outline a plan to construct an adaptive optimization.
More concretely, we propose to leverage the experimental data and

derive optimal fuzzing parameters for a given PUT and hardware

configuration. Ideally, we can improve AFL++’s accuracy without

losing throughput, thus increasing its utilization across fuzzing

campaigns.

Finally, our experimental study may help us identify new prob-

lems in coverage tracking, thus leading to qualitative improvements.
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