Cross Module Quickening — The Curious Case of C
Extensions

Felix Berlakovich &
University of the Bundeswehr Munich, Neubiberg, Germany

Stefan Brunthaler =
University of the Bundeswehr Munich, Neubiberg, Germany

—— Abstract

Dynamic programming languages such as Python offer expressive power and programmer productivity
at the expense of performance. Although the topic of optimizing Python has received considerable
attention over the years, a key obstacle remains elusive: C extensions. Time and again, optimized
run-time environments, such as JIT compilers and optimizing interpreters, fall short of optimizing
across C extensions, as they cannot reason about the native code hiding underneath.

To bridge this gap, we present an analysis of C extensions for Python. The analysis data indicates
that C extensions come in different varieties. One such variety is to merely speed up a single thing,
such as reading a file and processing it directly in C. Another variety offers broad access through an
API, resulting in a domain-specific language realized by function calls.

While the former variety of C extensions offer little optimization potential for optimizing
run-times, we find that the latter variety does offer considerable optimization potential. This
optimization potential rests on dynamic locality that C extensions cannot readily tap. We introduce
a new, interpreter-based optimization leveraging this untapped optimization potential called Cross-
Module Quickening. The key idea is that C extensions can use an optimization interface to register
highly-optimized operations on C extension-specific datatypes. A quickening interpreter uses these
information to continuously specialize programs with C extensions.

To quantify the attainable performance potential of going beyond C extensions, we demonstrate
a concrete instantiation of Cross-Module Quickening for the CPython interpreter and the popular
NumPy C extension. We evaluate our implementation with the NPBench benchmark suite and report
performance improvements by a factor of up to 2.84.

2012 ACM Subject Classification Software and its engineering — Runtime environments; Software
and its engineering — Interpreters

Keywords and phrases interpreter, optimizations, C extensions, Python
Digital Object Identifier 10.4230/LIPIcs. ECOOP.2024.6

Supplementary Material

Software (Docker image for Artifact Fvaluation): https://doi.org/10.5281/zenodo. 11174717 [6]
Software (WIP code of the NumPy part of CMQ): https: //github.com/fberlakovich/cmg-numpy-ae [5]
Software (Updated code of the CPython part of CMQ): https://github.com/fberlakovich/cmqg-ae [4]

Funding The research reported in this paper has been funded by the Federal Ministry for Climate
Action, Environment, Energy, Mobility, Innovation and Technology (BMK), the Federal Ministry for
Labour and Economy (BMAW), and the State of Upper Austria in the frame of the COMET Module
Dependable Production Environments with Software Security (DEPS) [FFG grant no. 888338] and the
SCCH competence center INTEGRATE [FFG grant no. 892418] within the COMET — Competence
Centers for Excellent Technologies Programme managed by Austrian Research Promotion Agency
FFG.
© Felix Berlakovich and Stefan Brunthaler;

37 licensed under Creative Commons License CC-BY 4.0
38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 6; pp. 6:1-6:29

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:felix.berlakovich@unibw.de
https://orcid.org/0000-0003-0132-3728
mailto:brunthaler@unibw.de
https://orcid.org/0000-0001-9766-4871
https://doi.org/10.4230/LIPIcs.ECOOP.2024.6
https://doi.org/10.5281/zenodo.11174717
https://github.com/fberlakovich/cmq-numpy-ae
https://github.com/fberlakovich/cmq-ae
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2

Cross Module Quickening — The Curious Case of C Extensions

1 Motivation

Productivity or performance? Despite the ever-increasing performance of computers, software
developers are faced with this conundrum. They can either choose a high-level language like
Python to benefit from abstractions like dynamic typing or garbage collection, but sacrifice
performance. Alternatively, they can resort to low-level programming languages like C or
C++ to gain better performance, but at the cost of developer productivity and safety.

According to the TIOBE index, the popularity of high-level languages such as Python or
Ruby is unbroken! [36]. At the same time, however, the poor performance of these high-level
languages remains an ongoing problem for, e.g., Python or Ruby [2, 39, 31]. Recent efforts
address the performance issues of Python and Ruby [16, 38, 37, 40, 10, 9, 11, 12, 15, 14, 34, 35].

Besides the language VMs themselves, Ruby and Python, also have a thriving ecosystem
of C extensions. C extensions, however, do not profit from optimizing the language VM.
With the ongoing VM optimization efforts and the ensuing increase in performance of the
core language, the performance of C extensions could come into focus in the near future.

C extensions also pose an optimization barrier for JIT compilers like PyPy or YJIT [17].
Due to the lack of semantics, JIT compilers cannot reason across the boundary of the core
language. As a result, JIT compilers cannot fully optimize at the interface to C extensions or
even into the extension code. A common workaround is to reimplement the entire extension
in the host language (e.g., Python), thus removing the lack of semantics and closing the
gap between VM and extension. For example, the PyPy project includes a pure Python
implementation of a subset of NumPy to enable more aggressive optimizations. This approach
has improved performance substantially in some cases, but requires a full or at least partial
rewrite of the extension.

The two approaches of (i) not optimizing extensions at all, or (ii) rewriting them in
the host language to make them accessible for JIT compilers, occupy two extremes on the
design spectrum. In this paper, we explore an additional way of optimizing the interaction
of high-level language code with C extensions.

We first provide a short analysis of the different C extension varieties, based on popular?
C extensions for Python (see Section 3). Our analysis indicates that some C extensions
focus on a single, isolated task, which is implemented in optimized C. This variety does
not lend itself well to optimization and would also not profit from JIT compilation in many
cases. The other variety provides a broader API and custom datatypes, effectively exposing
a domain-specific language through an API. This second variety offers a larger optimization
potential.

To tap this potential, we introduce a new, interpreter-based optimization technique called
Cross-Module Quickening, or CMQ for short (see Section 4). CMmQ allows the interpreter, in
collaboration with the C extension, to extend the interpreter’s optimization effort into the
extension. The key idea is to provide the C extension with an interface to register specialized,
extension-specific interpreter instructions. These specialized derivatives allow extension
authors to exploit, for example, type locality within the C extension that would otherwise
be invisible to the interpreter. Our technique does not require any changes, such as type
annotations, in the Python program. CMQ also does not depend on runtime code-generation
and is, thus, suitable for resource-constrained devices.

To demonstrate our idea, we analyze the optimization potential in NumPy, a popular
Python C extension (see Section 5.2.5 and Section 6). We provide specialized derivatives for
a number of NumPy operations and achieve a speedup of up to 2.84x in NPBench, a collection
of compute-intensive NumPy programs (see Section 7).

1 Python, for example, has continuously gained in popularity since 2018 and even leads the trends for
2024, so far
2 The PyPI statistics range back only one month.

F. Berlakovich and S. Brunthaler

Summing up, this paper contributes the following

We present Cross-Module Quickening, or CMQ for short, a new interpreter-based op-
timization architecture to optimize across C extensions. CMQ introduces a so-called
Optimization Interface that allows C extensions to provide optimized instructions, thereby
enabling cross-module type feedback via inline caching.
We classify different use cases of C extensions with respect to their performance potential.
We find that it is presently impossible to conduct an extensive quantitative analysis. The
key obstacle is due to each C extension requiring varying amounts of domain expertise,
usually provided by a human that has experience in using a given C extension. To shed
light into the C extension “black box,” we conduct a qualitative analysis on the top ten
C extensions instead.
We describe the relevant details of a concrete CMQ implementation for the CPython
interpreter and the NumPy extension. This concrete implementation introduces novel
interpreter optimization techniques, such as extension-delimited superinstructions, and
per-instruction caches for C extensions.
We report the results of a comprehensive evaluation that encompasses the following
dimensions: dynamic locality, performance, and implementation effort. Specifically, an
in-depth analysis of NPBench on NumPy finds:

Quantitative dynamic locality of about 99%.

Performance improvements by a factor of up to 2.84.

Moderate implementation effort of less than 4,000 lines of code in CPython and NumPy.

2 Background

2.1 C Extensions

Most language VMs offer a way to interact with native code, typically called foreign function
interface. Several language VMs go one step further by allowing native code extensions.
These extensions are not limited to merely providing functions that can be called from the
host language via a foreign function interface. Instead, an extension can define arbitrary host
language types and modules, and even manipulate the VMs runtime state through an API.
Extension means that the language VM loads the code dynamically at runtime, as opposed
to code that is integrated at build time (e.g., CPython’s sqlite3 extension). For example,
Python, Ruby, and Lua all offer such extension APIs.

In principle, native extensions can be written in any language that compiles to native
code and can access the VM’s APIs. Since C is the most popular language for native
extensions, however, we will refer to native extensions collectively as C extensions from now
on. Nonetheless, the principles described in this paper apply to native extensions written in
any language.

2.2 Type Feedback via Inline Caching

Inline caching, first introduced by Deutsch and Schiffmann in 1984, is a technique for
optimizing dynamic languages [18]. The technique is particularly useful for language VMs
featuring generic operations. Many language VMs, for example, have a generic BINARY_ADD
operation that can add two operands with arbitrary types, such as integers or floats.

To deal with the different semantics of, e.g., adding integers compared to adding floats, the
language VM needs to resolve the concrete implementation dynamically based on the operand
types. Depending on the number of supported types and implementations, this lookup

6:3

ECOOP 2024

6:4

Cross Module Quickening — The Curious Case of C Extensions

process can be expensive. The important observation behind inline caching is that even for
dynamically typed programs, the operand types for an operation hardly ever change, if at
all. Deutsch and Schiffmann called this principle dynamic locality of type usage [1, 18, 40].

A language VM can leverage this locality and cache the result of the expensive lookup
process. In the example of BINARY_ADD above, the language VM could cache a pointer
to the concrete implementation of e.g., integer addition. Since this cache typically resides
inline with the instructions, i.e., no additional redirection is needed to access the cache, it is
called an inline cache. Next time the language VM encounters this particular occurrence of
BINARY_ADD, it can use the cached pointer instead of resolving the concrete implementation
again. Before using the cache, however, the language VM needs to check that the operand
types are equal to the expected types. In the unlikely case that the operand types have
changed, the runtime would invalidate the inline cache.

2.3 Quickening: Instruction Rewriting to Capture Runtime Knowledge

Another interpreter optimization technique is called quickening. Quickening describes a
process where an interpreter uses runtime feedback, such as type usage, to rewrite generic
instructions to more concrete ones. This principle was originally used for efficiently resolving
classpool references in tha Java virtual machine [29]. The more concrete instructions are
sometimes called optimized derivatives or just derivatives.

An example is a generic BINARY_OP instruction, whose operation depends on its operand.
BINARY_OP with argument 1 performs an addition, whereas with argument 2 it performs
a subtraction. If the language VM observes that a particular BINARY_OP always performs
a subtraction, it can rewrite the instruction to BINARY_SUBTRACT. A BINARY_SUBTRACT no
longer has to consult its argument value, but can perform a subtraction directly.

Quickening is a way for the language VM to encode temporal locality in its instruction set.
Depending on the observed information, the encoded state is either permanent or transient,
but with a high likelihood. If the state is permanent, the quickened instruction does not
need to check any assumptions. If it is only likely, however, the language VM needs to
validate the assumptions under which the quickening occurred. If the program invalidates an
assumption, the language VM needs to rewrite affected instructions back to their original,
generic form. For example, if a quickened instruction depends on specific operand types, and
the operand types change, the language VM, needs to revert the instruction to a type-generic
instruction. As the language VM speculates on the stability of the observed information,
this optimization is typically called speculative optimization. This reversal of an optimized
instruction back to its original form typically called deoptimization.

2.4 Inline Caching and Quickening in Python

Our implementation of CMQ builds on top of CPython and its existing optimization in-
frastructure. To aid the understanding of our implementation, we give a short overview of
the related techniques here. CPython uses a combination of inline caching and quickening.
Specifically, CPython uses specialized instructions, some of which also have an inline cache.
The instructions with inline cache, such as LOAD_GLOBAL_MODULE, store assumption-related
data in the cache that allows them to deoptimize if any of the assumptions change. Other
instructions, like BINARY_ADD_INT, validate the assumptions without an inline cache (e.g., by
directly checking the operand types). That is, their assumptions are directly encoded in the
instruction set [13].

F. Berlakovich and S. Brunthaler

Extension Categories Extension Categories

brotli binder Tensorflow extender,optimizer

cryptography binder NumPy extender

matplotlib optimizer,binder Pandas extender

Pillow optimizer CuPy extender

PyYAML optimizer PyTorch extender,optimizer
(@) Python extensions with little room for C (b) Python extensions with custom datatypes,
extension optimization. operator overloading and new surface syntax

(extenders).

Figure 1 Overview of the Python C extensions we considered for CMQ. The extensions on the
left are binders and/or optimizers. The extensions on the right are extenders.

A peculiarity of CPython is that it uses the inline cache also to store profiling data
that controls the quickening process. Specifically, instructions with specialized derivatives,
store a counter in the inline cache. Every generic instruction derivative (e.g., LOAD_GLOBAL)
decreases the counter upon execution. Once the counter reaches zero, the instruction tries to
quicken itself to one of the specialized derivatives (e.g., LOAD_GLOBAL_MODULE). Thus, the
counter implements a warmup phase in which the involved operands and types can stabilize.
Likewise, when a specialized derivative has to deoptimize due to an invalidated assumption, it
increases the counter by a certain backoff value. The backoff value ensures that an instruction
with varying operand types does not continuously swap between two derivatives.

CPython organizes generic instructions and their specialized derivatives in instruction
families. Each member of an instruction family has the same inline cache size. The inline
cache is located directly after the instruction in the instruction stream. Each instruction is
responsible for skipping the cache after instruction execution.

3 C extensions of Dynamic Languages

In this section we describe the results of our investigation of Python’s C extension ecosystem.
Although we focus explicitly on Python, we believe that our findings generalize to similar
ecosystems, such as Ruby or Lua.

3.1 Domain Specificity of C Extensions

Our initial plan was to conduct a large-scale, quantitative analysis of C extensions. After some
experimentation and manual investigation, however, we found this goal to be elusive. This
failure is due to C extensions being domain specific. They solve a single, well-defined problem,
but do so in radically different ways. Ways that do not generalize from one C extension to
another, and, therefore, pose a substantial obstacle to automation, the prerequisite for a
large-scale analysis and quantitative investigation.

The domain specificity of C extensions not only frustrates generalized analysis attempts.

Our performance analysis of C extensions identified a symmetric problem: If one lacks the
domain expertise to tell what a “good use case” for a C extension is, it is nigh impossible to
perform unbiased experiments.

These initial findings led us to conduct a qualitative analysis using manual investigation
instead.

6:5

ECOOP 2024

6:6

Cross Module Quickening — The Curious Case of C Extensions

3.2 Of Optimizers, Binders, and Extenders

We analyzed the C extensions for Python in Figure 1 and found that they fall, broadly

speaking, into three categories:

1. Optimizers: These C extensions could in principle be written in Python, and some of
them probably were initially Python libraries. Due to the proverbial need for speed,
however, these libraries are written in C, thereby eliminating a lot of the performance
overhead associated with Python. Often, these C extensions offer just a single point of
entry, execute efficiently in machine code, and return Python-processable data.
Consider the PyYAML extension as an example: The interface is just one call to the parse
routine, which performs all the parsing in C, and returns the corresponding configuration
data.

2. Binders: These C extensions usually cannot be written in Python, because they provide
bindings to existing libraries to the Python ecosystem. These libraries are written in
another language, such as C and C++, and bindings are the intermediary layer that
translates from one world to another. The functionality corresponds to the external
library, or a subset thereof that is reasonable to use from within Python.

Consider the 1xml extension as an example: The interface corresponds to the libxml
library, which implements efficient, feature-rich, and standards-compliant XML parsing.

3. Extenders: These C extensions extend Python with functionality not readily present

in Python itself. These extensions define custom datatypes, overload and/or misuse
operators, and at times resort to a custom embedded-DSL modeled through function
calls. Note that extensions in this category are not mutually exclusive to others, as they
can also embed existing libraries into their functionality.
Consider the NumPy extension as an example: NumPy defines its own datatype, a multi-
dimensional array mapped to contiguous memory . This feature extends Python, as in
Python a list or an array behaves similar to Java jagged arrays, i.e., each dimension is
just a single array, which maps to another dimension, being a single dimensional array
again. In contrast to Python lists, NumPy’s array representation enables high-performance
operations on these arrays.

Through the performance optimization lens, the first two categories offer little potential
for performance optimization. This lack of potential is due to their inner workings. PyYAML,
for example, slurps a YAML file into C, parses the file efficiently using native-machine code,
and creates the corresponding Python objects. Since this has been highly optimized already,
no optimization opportunity presents itself. Similarly, 1xml is just a small layer that invokes
libxml to do the heavy lifting. No complex and expensive processing is done within the C
extension. Both of these effects are amplified further by the old adage that time spent in
libraries is lost w.r.t. optimization [20].

3.3 Exploring Extenders

Extenders, i.e., C extensions enriching the Python programming language do so in various
ways. These extensions provide custom data types, such as NumPy providing a multi-
dimensional array that is mapped to contiguous memory. Since our target languages are
dynamically typed, manipulation of custom data types relies upon operator overloading. On
top of these data types, C extensions have the possibility to (ab-)use existing functionality
to introduce surface syntaz. NumPy, for example, (ab-)uses Python’s tuples to provide a way
to encode multi-dimensional array index access. Where no such surface syntax is available,
Extender C extensions resort to using function calls. In combination these properties form a
type of embedded DSL.

F. Berlakovich and S. Brunthaler

Without CMQ With CMQ
BINARY_OP BINARY_OP_EXTERNAL
T
l—l |
e
!
Optimization
Lﬁ_#{ Interface |~ 7}
CPython —-JOJ—O_\—O—l . NumP
Runtime WPy CPython y
Runtime
i . Optimized — — > Specialization
O Funettane ® Core Logic Dorivative ., Eecution
(a) Using NumPy in CPython without CmMQ. (b) Using NumPy in CPython with CMQ and opti-

mized derivatives.

Figure 2 Without CMQ (left), C extension-calls need to go through a cascade of function calls
before reaching the core logic. With CMQ (right), the language VM calls optimized derivatives
directly.

In contrast to Optimizers and Binders, programs using Extenders frequently cross the
boundary between language VM and C extension. Context such as type locality established by
the language VM or the C extension does not cross this boundary, leading to redundant checks
and missed optimization potential. In Section 4 we discuss how CMQ lifts this optimization
potential. To give concrete examples, we will now focus on the NumPy C extension, which
adds high-performance numeric processing to Python.

3.4 Summary of Observations

Let us briefly summarize our findings, which are of vital importance for the following Sections.

C extensions require domain expertise to analyze and evaluate.

Only one of three categories offers dormant optimization potential.

The Extenders category of C extensions form a kind of embedded DSL, by providing
custom types, operator overloading, or introducing surface syntax.

4 Design of Cross-Module Quickening

The goal of CMQ is to enable optimizations across extension boundaries. Figure 2 gives an
overview of CMQ. Without CMmQ (Figure 2a), each operation involving a C extension must
go through a cascade of function calls. At present, the interface between language VM and
C extension poses an optimization boundary. As a result, the function calls are necessary
to reestablish context that was already established previously, or on the other side of the
optimization boundary (language VM vs C extension).
To eliminate this overhead, CMQ proceeds as follows (see Figure 2b):
1. CmQ provides a dedicated Optimization Interface or OINT for short, which enables C
extensions to provide domain-specific optimizations.
2. Based on context information, the C extension can use quickening-based optimization
through optimized interpreter instructions.

6:7

ECOOP 2024

6:8

Cross Module Quickening — The Curious Case of C Extensions

3. The interpreter provides an interface to replace single generic instructions or entire
instruction sequences with optimized ones.

4. Optimized instructions validate that their assumptions hold and deoptimize upon miss-
speculation.

5. Additional optimization opportunities for C extensions exist, for example, through having
per-instruction caches.

The following sections explain the relevant conceptual design details with examples
from CPython and NumPy. Each section also contains forward references to the relevant
implementation details in CMQ. Although we discuss implementation details primarily for
the NumPy C extension, the principles underlying this specific implementation generalize not
only to other C extensions, but also to C extension ecosystems of other dynamic programming
languages. For brevity, we call our modified NumPy CMQ-NumPy.

4.1 Optimization Interface

C extensions for language VMs such as Ruby or Python are implemented as dynamically
loadable modules. This means that C extensions and the language VM communicate via a
predefined interface. Typically, the interface consists of both, public APIs in the language
VM and hooks in the C extension called by the language VM. For example, CPython
automatically calls public PyInit_* functions exposed in a loaded C extension. These
functions create module objects for each module provided by the C extension. At the same
time, CPython exposes functions to e.g., query the type of objects or to create new objects
such as dictionaries.

We extend this interface between language VM and C extensions with an optional
Optimization Interface, or OINT for short. The goal of the OINT is to expand the interpreter’s
optimization capabilities with domain-specific optimizations. To that end, the OINT allows
a C extension to register an instruction optimization hook. One goal of the OINT is to shield
the C extension from as many language VM specific implementation details as possible.

Whenever the language VM tries to optimize an instruction, it calls all registered
instruction optimization hooks. When exactly an optimization attempt happens, depends
on the concrete architecture of the language VM. For example, optimization can happen
either as part of an instruction’s execution (as is common for quickening) or in a dedicated
optimization phase (as is common in JIT compilation). CPython performs instruction
quickening as part of the generic instruction’s execution, once an optimization counter
reaches zero (see Section 2.4).

The exact contract of the instruction optimization hook depends on the concrete language
VM implementation. In general, the language VM needs to provide the C extension with
enough information to decide which optimizations are applicable. For example, in CMQ-
NumPy, the instruction optimization hook receives a pointer to the current instruction and a
pointer to the operand stack.

The optimization of an instruction through a C extension is optional. Based on the
instruction and its operands, a C extension can decide which optimizations are applicable, if
any. For example, the C extension can query the operand types to leverage dynamic-type
locality. CMQ-NumPy uses this principle to optimize certain BINARY_OP occurrences. We give
a more detailed description of the BINARY_OP optimization in Section 6.2. In addition to
type checks, the C extension can inspect further properties of the operands to decide whether
optimizations are applicable. In Section 6.2 we describe how CMQ-NumPy inspects the name
of NumPy ufunc objects to decide whether it can optimize specific CALL instructions.

F. Berlakovich and S. Brunthaler

4.1.1 Validating Assumptions and Deoptimization

As discussed in Section 2.3, quickening optimizations can be speculative. To guarantee
correctness, the language VM needs a way to detect invalid assumptions and restore the
original instructions. One strategy of validating assumptions is as part of the optimized
instruction’s execution. For example, our BINARY_OP derivatives verify that the operands on
the stack have the expected types.

Performing the assumption validation in the operation itself works well for assumptions
about operands, such as their types, but is less suited for assumptions concerning global
properties. For example, in addition to specific operand types, our BINARY_OP derivatives

assume NumPy’s default arithmetic implementations for e.g., adding and subtracting arrays.

While a user can change the implementations by overriding fields in the NumPy module, it
happens rarely. Similar to operand types, each optimized derivative could validate this
assumption before execution. However, with such an implementation each derivative suffers
from a small performance overhead to check for an event that occurs infrequently. To mitigate
this cost, the OINT offers an alternative way to validate assumptions. Specifically, the OINT
allows C extensions to record deoptimization triggers for optimized instructions. Any code
within a C extension that modifies properties previously optimized derivatives depend on,

needs to notify the OINT . The OINT then deoptimizes all affected optimized instructions.

Code that changes any of NumPy’s default arithmetic implementations, for example, triggers
an deoptimization event. In response, CMQ deoptimizes all BINARY_OP derivatives. This
approach shifts the burden of assumption validation to the infrequent path of changing
arithmetic implementations.

A hybrid between the previous two approaches of deoptimization is to combine multiple
object properties into a meta-property. For example, our CALL derivatives optimize calls
of NumPy universal functions, or ufunc for short. The ufunc object is a stack operand
of the corresponding CALL derivative. In addition to validating the ufunc operand’s type,
the CALL derivative needs to verify several additional properties. For example, the CALL
derivative is only valid for ufuncs without custom user loops. Verifying all these properties
individually causes a performance overhead and, thus, reduces the profit of the CALL derivative
optimization. Instead, we change the ufunc object to maintain a meta-property in the form
of a specializable flag. The specializable flag represents the state of all individual
properties combined. Code that updates any of the individual properties, also updates the
specializable flag accordingly. Instead of validating all ufunc properties individually, the
CALL derivative now has to validate only the specializable flag. Figure 3a illustrates this
process graphically. With this approach, the burden of assumption validation is shared
between code that modifies ufunc properties and the CALL derivatives.

We describe our implementation of the specialization infrastructure for CPython in more
detail in Section 5.2.5.

4.2 Cross-Module Optimization Opportunities
4.2.1 Type-specialized Instructions

In Section 2.2 and Section 2.3 we discussed the principle of locality of type usage. CPython

leverages this principle to quicken type-generic instructions to type-dependent instructions.

For example, CPython quickens BINARY_OP to BINARY_OP_ADD_INT, a derivative that directly
adds the two integer operands. Compared to the generic instruction, the derivative’s call
stack contains three fewer frames when reaching the final _PyLong_Add function. In addition,
the derivative saves multiple intermediate calls needed to resolve the concrete function that
adds Python integers. More specifically, the derivative saves the following steps performed
by the generic instruction:

6:9

ECOOP 2024

6:10 Cross Module Quickening — The Curious Case of C Extensions

CALL
LOAD UFUNC LOAD | LOAD |BINARY | STORE
FAST FAST | FAST | ADD | FAST
MIN
T T
1 e
| validate ! 1 | |
| piuinh Ztuiniaite | Zutuiviisiuinl Siubeubuteie vy
| : |00 i
deoptimization I ADD ADD | INT |
N |
| | INT | | FLOAT |4l ARRAY ‘
I—V-—— b ! =
Cross-Module
LOAD | STORE CPython ; -
FAST : CALL - NAME - Quickening
(a) CMQ uses meta-properties to efficiently vali- (b) CMQ allows to quicken instructions with
date assumptions (see Section 4.1.1). domain-specific derivatives.

Figure 3 Overview of meta-properties (left) and type-specialized instructions (right) in CMQ.

1. Check if any of the operands has an implementation for the + slot.

. Check if the left operand is a number and has the + slot.

3. Check if the right operand is a number of a different type than the left operand and has
a different + slot.

4. Depending on whether the right operand has a different + slot and is a subtype of the
left operand, call the left or right operand’s + slot.

5. In the slot implementation, ensure that both operands are actually Python Longs.

N

List 1 Steps for resolving the implementation for adding two integers in CPython.

Under the assumption that both operands are Python Longs, the final operation (_-
PyLong_Add) is known immediately and the intermediate steps in List 1 become redundant.
However, a language VM can only leverage locality of type usage, if it knows the types and
operations involved. For example, the special handling of integer addition in CPython is only
possible if both operands are non-subtyped Python Longs. If the language VM cannot reason
about a type, such as a type provided by a C extension, quickening is no longer possible.

This issue is exacerbated by C extension types. Depending on the domain and the
extension, the C extension has to check additional properties to the ones in List 1. We
describe the additional checks that NumPy performs in more detail in Section 6.1. Similarly to
the checks in List 1, the additional checks in NumPy are strongly connected to the operands’
types. That is, under the assumption of specific operand types, the majority of checks become
redundant.

Based on this observation, CMQ enables type-specialized instructions that depend on
C extension types. CMQ-NumPy, for example, provides specialized instructions that add
two double precision floating point arrays. As a result, starting from the interpreter loop,
the call stack for adding two such arrays collapses from 13 frames to 2. In addition, the
specialized instructions save several intermediate checks. These checks are subsumed by the
fixed number and types of operands involved.

4.2.2 Extension-delimited Superinstructions

Replacing generic instructions with type-specialized instructions renders many of the checks
performed by the generic instruction redundant (see Section 4.2.1). With the OINT, a C
extension is not limited to replacing a single instruction at a time, however. In certain

F. Berlakovich and S. Brunthaler

LOAD | LOAD | LOAD |BINARY [BINARY

array [1:, 2:] FAST | FAST | CONST | SuB MUL
I“ll T— .
LOAD LOAD | BUILD BUILD [BINARY h 4 v
CONST | CONST | SLICE | "°° | TUPLE | SUBSCR FLOAT FLOAT
h | ARR ARR
\ i SuB MUL
,,,,,,,,,,, \/,,,,,,,,,,,/ Cache 3 B

CONST

ARR _ = %0.5=
B R

(a) CMQ can replace instruction sequences, such (b) Caching data between instruction executions (see
as custom array subscripts, with a single opti- Sections 4.2.3 and 6.4).
mized instruction (see Section 4.2.2).

Figure 4 Illustration of extension-delimited superinstructions (left) and per-instruction caches
(right).

cases, a specialized instruction subsumes the result of an entire sequence of instructions. For
example, for BINARY_SUBSCRIPT instructions with constant indices, such as array[1:, 2:],
CMQ-NumPy precomputes the index structure during specialization. With the index structure
computed, all the index operands become redundant. As a result, the instructions pushing

these operands onto the operand stack are now dead code in program analysis terminology.

To account for such cases, the OINT allows to replace entire sequences of instructions with
specialized derivatives, as show in Figure 4a.

By subsuming multiple unoptimized instructions, the optimized derivative represents a
type of superinstructions. Unlike conventional superinstructions however, the boundaries of

the superinstructions enabled by CMQ are domain-specific and defined by the C extension.

Thus, we call this type of superinstruction extension-delimited superinstruction.

4.2.3 Caching Between Instruction Executions

Specialized instructions can efficiently encode type membership and similar properties with
a low information density (see Section 4.2.1). For example, type membership is representable
as a single bit in the instruction encoding. Some optimizations, however, depend on data that
is hard to encode in an instruction, but instead need a dedicated cache. NumPy’s arithmetic
instructions, for example, frequently allocate new arrays, which are deallocated only a few
instructions later. At the expense of a little additional memory, optimized derivatives can
keep a cached result array to avoid repeated allocations and deallocations. To that end,
the OINT provides a mechanism to store data in a cache space specific to an instruction
occurrence. We call this cache occurence cache. Conceptually, the occurence cache allows
an instruction to communicate data between instruction executions or between specialization

time and execution. We describe instantiations of both variants in more detail in Section 6.4.

The occurence cache acts like an inline cache, but it is implementation-specific. To the
C extension it is opaque whether the language VM actually stores the cache inline. Also, in
contrast to the typical usage of an inline cache, i.e., storing function pointers, the occurence
cache can store arbitrary data, including data pointers. We describe our implementation of
the cache space in more detail in Section 5.2.3 and how we use the cache in Section 6.4.

6:11

ECOOP 2024

6:12

Cross Module Quickening — The Curious Case of C Extensions

5 Implementation of Cross-Module Quickening in CPython

In this section, we start with a short overview of CPython’s internal implementation and
then describe the integration with CmQ.

5.1 CPython in a Nutshell

The CPython interpreter is a stack machine with instructions that consist of an opcode
and an oparg. The opcode specifies what an instruction does and is one byte long. The
oparg serves different purposes, depending on the instruction, and is also one byte long. For
example, in the LOAD_FAST instruction, the oparg specifies which local-variable slot to push
onto the operand stack.

Instructions with inline caches are grouped into families. All members of the same family
are specializations of a generic instruction that is also part of the family. Family members
have an equally sized inline cache (see Section 2.4 for more details).

The snippets of code that implement an instruction’s semantics are called opcode handler.
CPython uses indirect threading, which means that each opcode handler jumps to the next
handler through a dispatch table [21]. A compiler feature called computed gotos allows an
efficient compilation of such dispatch patterns.

5.2 Integration with Cross-Module Quickening

CMQ enables C extensions to replace generic interpreter instructions with optimized deriva-
tives. When integrating CMQ with CPython’s dispatch routine, we faced a number of
competing constraints:

1. Specialization should happen as soon as possible to unlock additional performance.
However, the language VM should not repeatedly try to specialize an instruction if no
specialization is possible or if the instruction deoptimized recently.

2. Considering that specialization happens for hot code, the execution of external, optimized
derivatives should be as fast as possible.

3. CMQ needs to avoid consuming too much of CPython’s already limited opcode space.

4. CPython can load multiple C extensions simultaneously, each of which could potentially
register optimized derivatives. In addition, each C extension can register multiple different
derivatives for the same generic instruction. Therefore, CMQ must allow the registration
of as many derivatives as possible.

5. While specialization and deoptimization happens infrequently compared to an instruction’s
execution, the time spent on these tasks must eventually be amortized. Thus, specialization
and deoptimization must be reasonably fast, or they defeat the purpose of optimization.

In the following subsections, we describe our design choices for CMQ and how each decision
relates to the aforementioned challenges.

5.2.1 Specializing Hot Instructions

For CMQ, we extend CPython’s existing quickening mechanism to consider not only CPython
derivatives, but to also call registered instruction optimization hooks (if any). Extending the
existing mechanism allows CMQ to leverage CPython’s optimization counter infrastructure.
The optimization counter ensures that CMQ (1) only attempts to specialize hot instructions
and (2) that each failed optimization attempt delays further attempts by an increasing value.
Specifically, if both, CPython’s internal optimizations and the optimization function, fail to
optimize an instruction, CPython increases the optimization counter by a backoff value (see
Section 2.4).

F. Berlakovich and S. Brunthaler

5.2.2 External opcode handlers

Ideally, C extensions could register opcode handlers that resemble internal opcode handlers.
Computed gotos, however, are only possible within a single function. The C standard
considers jumps into the middle of a function from outside the function undefined behavior.
In CPython, therefore, an exact resemblance of internal opcode handlers is not possible.
Instead, we resort to subroutine-threading for the external opcode handlers, i.e., we implement
each handler as a function in the C extension.

5.2.3 Dealing with a Limited Opcode Space

CPython’s small opcode encoding of one byte means that few opcodes remain for specialization
through C extensions. Specifically, CPython 3.12 has 208 opcodes, leaving 47 opcodes
undefined. As new CPython releases regularly introduce new opcodes, consuming a large
number of the undefined opcodes for CMQ is undesirable. Thus, we cannot introduce a new
opcode for each optimized derivative a C extension provides. Instead, we define one additional
opcode for each optimizable generic instruction. In other words, we add one opcode for each
generic instruction for which a C extension can provide one or many optimized derivatives.
For example, we add the BINARY_OP_EXTERNAL opcode since C extensions can specialize
BINARY_OP.

One additional opcode is not sufficient, however, to differentiate between different deriva-
tives. For example, our modified NumPy adds several derivatives for BINARY_OP, depending
on the operation and the operand types involved. To that end, when C extensions register
their specialized derivatives, CMQ assigns each derivative for the same instruction a unique
id. CmQ stores the ids in a table to map each id to an external opcode handler. During
specialization, CMQ repurposes the oparg of the corresponding *_EXTERNAL instruction to
hold the id and, thus, to identify the exact derivative. For example, assume that NumPy
wants to specialize an occurrence of BINARY_OP with a derivative NP_ADD_FLOAT_FLOAT.
During the initial registration, CMQ assigns the derivative NP_ADD_FLOAT_FLOAT the id 5.
During specialization, CMQ replaces the generic BINARY_0P with BINARY_0OP_EXTERNAL and
its original oparg with 5. During execution of the BINARY_0OP_EXTERNAL occurrence, CMQ
looks up the external opcode handler with the oparg and calls the external handler.

This approach has advantages as well as disadvantages and is specific to CPython’s
internal implementation. One advantage is that this approach consumes only a small number
of opcodes. Another advantage is that CMQ has to rewrite only the replaced instruction,
as opposed to multiple instructions affected by a layout change. Since the *_EXTERNAL
instructions have the same inline cache size as their generic counterparts, the layout of
the instructions remains the same. If CMQ instead, e.g., changed the inline cache size, all
jumps crossing the affected instruction as well as exception-handling tables would have to be
rewritten.

A disadvantage of this approach is that it introduces an additional indirection. The
opcode handlers of the *_EXTERNAL instructions have to lookup the external function with
the oparg. For CPython with NumPy we found this overhead to be negligible and prioritized
the benefit of saving opcode space. In language VMs with a larger opcode space, or in
cases where the indirection negatively affects performance, specialized derivatives can be
mapped directly to opcodes. A hybrid approach is possible as well. For example, particularly
performance-critical derivatives can receive their own opcode, whereas other derivatives are
grouped according to the scheme above.

6:13

ECOOP 2024

6:14

Cross Module Quickening — The Curious Case of C Extensions

5.2.4 Implementing Extension-Delimited Superinstructions

In Section 4.2.2 we discussed the concept of extension-delimited superinstructions. We im-
plemented extension-delimited superinstructions by allowing C extensions to indicate unused
arguments during specialization. For example, our modified NumPy specializes BINARY_-
SUBSCRIPT by precomputing its index datastructure and replacing it with a NP_BINARY_ -
SUBSCRIPT_CONSTANT derivative (see Section 6.4). As a result, all the index operands
required by BINARY_SUBSCRIPT become unused. CMQ-NumPy marks the operands as unused
via the OINT and CMQ automatically takes care of skipping the operand setup during later
executions.

In a first step, CMQ determines the instructions responsible for pushing the unused
operands onto the stack. We call these instructions operand originators. As the operand
originators are no longer needed, their operands become unused as well. In a second step,
CMQ recursively finds the operand originators of the now unused operands. This process
continues until CMQ has found the first unused instruction in the sequence. CMQ then
replaces the first instruction with a JUMP that jumps directly to the optimized derivative,
e.g., NP_BINARY_SUBSCRIPT_CONSTANT. Note, however, that such an optimization is only
possible if the skipped instructions are side-effect-free. If, for example, one of the instructions
is a CALL instruction, CMQ does not optimize the argument setup.

5.2.5 Deoptimization in CPython

As optimization assumptions can become invalid, CMQ needs a way to restore the original
instructions in such a case. To that end, CMQ records a deopt structure for each instruction
optimized. The deopt structure contains a pointer to the optimized instruction and the
original opcode and oparg. The approach described in Section 5.2.3 requires CMQ to replace
the original oparg during specialization. The backup copy in the deopt structure enables
CMQ to restore the oparg upon deoptimization. Once the original instruction is restored,
CMQ executes the original instruction instead of the derivative.

For extension-delimited superinstructions (see Section 4.2.2), the deopt structure stores
the entire list of instructions that were replaced with the superinstruction. When deoptimizing
extension-delimited superinstructions it is not enough to restore the original instructions, how-
ever. Once the language VM reaches the deoptimizing extension-delimited superinstruction,
the instruction pointer is already past the instructions that would have pushed the operands
to the stack (see Section 5.2.4). Since the extension-delimited superinstruction does not
expect the same number of stack operands as the original instruction, executing the original
instruction would fail. Thus, after deoptimizing an extension-delimited superinstruction,
CMmQ replays all instructions responsible for the stack operands of the restored instruction.
Replaying is possible because we limit the related optimization to side-effect-free instructions
(see Section 5.2.4).

6 Implementation of Cross-Module Quickening in NumPy

To demonstrate the optimizations enabled by CMQ, we extended NumPy to use the OINT and
implemented various optimized derivatives. On module initialization, CMQ-NumPy registers its
optimization hook with CPython and later optimizes instructions related to array operations.
To understand these optimizations we first give a short overview of NumPy in Section 6.1. In
Sections 6.2-6.4 we outline how we implemented the CMQ-NumPy optimizations.

F. Berlakovich and S. Brunthaler

6.1 NumPy in a Nutshell

NumPy is one of the most popular CPython C extensions and consistently among the top 20
downloaded PyPi packages [22]. The NumPy package provides multidimensional arrays, called
ndarrays, of different data types that optionally can be contiguous, aligned and iterated in
different iteration orders. In addition to data representation via arrays, NumPy also contains
a variety of mathematical functions operating on those arrays. NumPy is also a cornerstone
of several other CPython packages, such as Pandas, SciPy, scikit-learn and PyTorch. To
integrate seamlessly with Python, NumPy makes extensive use of operator overloading and,
e.g., allows to add, subtract, multiply or divide arrays. Behind the scenes, NumPy takes
care of transforming the arrays as necessary to perform the desired operation. For example,
through a mechanism called broadcasting, NumPy allows to transparently add two arrays with
a different number of dimensions:

>>> np.array([1, 2, 3]) + np.array([[5, 6, 7], [1, 2, 3]11)
array([[6, 8, 10],
[2, 4, 611D

NumPy implements many of these operations on ndarrays as so called universal
functions or ufunc for short. A ufunc object represents a mathematical function that
operates element-wise on ndarrays. Each ufunc can have multiple underlying implementa-
tions of the mathematical function, called array methods. Which array method a ufunc uses
depends, among other factors, on the input operand types. Internally, NumPy implements
array methods as tuned C loops to exploit available hardware features (e.g., vectorization).
Before calling any array method, ufuncs are responsible for type casting, broadcasting and
several other standard NumPy features.

NumPy determines the ufunc and subsequently the array method responsible for performing
an ndarray operation in a multistep process. First, NumPy determines the responsible ufunc
object. For binary operations with operator overloading, NumPy reads the ufunc from a
module-wide table. For other operations, such as minimum or maximum, the ufunc object
is a callable Python object and pushed onto the operand stack. The subsequent steps are
identical for both cases, and we summarize them in List 2.

6.2 Exploiting ufunc Type Stability

NumPy’s flexibility and extensibility has allowed it to become a building block in a number of
different domains. For example, NumPy allows users to customize almost any step in List 2.
This flexibility comes at a cost, however. For every array addition, CPython first performs
the steps in List 1 and then the steps in List 2. A crucial observation is that many of the
steps in List 2 can be eliminated or simplified by fixating the types and number of inputs
to the ufunc. For example, when adding exactly two arrays in a BINARY_OP, the following
simplifications are possible.

If both input arrays are of type ndarray, Step 1 and Step 5 become redundant. If, in
addition, the array element types are known, Step 3 becomes redundant. Type-specialized
instructions described in Section 4.2.1 allow CMQ to efficiently speculate on these properties.
By additionally speculating that the user has not changed the default ufunc for adding
arrays, Step 2 and Step 3 become redundant. CMQ enables this type of speculation with the
deoptimization strategies outlined in Section 4.1.1.

6:15

ECOOP 2024

6:16

Cross Module Quickening — The Curious Case of C Extensions

1. Check if any of the operands overrides the ufunc. NumPy allows any operand participating
in a ufunc operation to override the responsible ufunc object, effectively implementing a
form of multi-dispatch;

2. Determine the exact casting rules and perform any necessary casting. For example, in

this step NumPy converts scalar values participating in an array operation into arrays;

Based on the resulting types from the previous step, resolve the array method;

With the array method, resolve the operation types, in particular the result type;

Call array preparation functions, if any;

Check if a single iteration of the array method loop is possible by analyzing the properties

of the participating arrays. Such a simplified case is possible for certain configurations of

input arrays. We skip the exact details here for brevity.

7. If a single loop is sufficient, allocate the output array (if necessary) and call the array
method loop

8. Otherwise, allocate an iterator and call the array method as many times as dictated by
the iterator.

oo hw

List 2 Steps for resolving NumPy ufunc and array methods. For more details see the NumPy
Enhancement Proposals 13 and 18 [8, 27], the NumPy manual on ufuncs [19] and the function
ufunc_generic_fastcall in ufunc_object.c in the NumPy codebase.

To unlock these optimizations, CMQ-NumPy provides specialized BINARY_OP derivatives for
several array type combinations. For example, CMQ-NumPy specializes BINARY_0P occurrences
that add or subtract two float arrays, effectively eliminating Step 1-5. While the case
distinction in Step 6 and the last step (either Step 7 or Step 8) remain, the specialized
derivatives simplify Step 6 to a few comparisons. In the original NumPy, Step 6 is handled
by a function that needs to handle several corner cases and deal with potentially more
than two input arguments. The added assumptions in the derivatives allow us to partially
evaluate the function and to inline the remaining checks directly into the derivatives. As the
optimized derivative is represented as BINARY_OP_EXTERNAL in CPython (see Section 5.2.3),
the optimization also eliminates the BINARY_QOP dispatching steps (see List 1).

A similar optimization is possible for calls of ufuncs objects via CALL instructions. As an
example, consider a call to the minimum function of the NumPy package: numpy.minimum([1,
2], [3, 41). CPython first loads the minimum ufunc object from the NumPy module and
pushes the object to the stack. Next, CPython pushes the argument lists onto the stack.
Finally, CPython calls the ufunc object via the Vectorcall protocol for calling into C
extensions. Like for the BINARY_QOP instructions, CMQ-NumPy provides a derivative that
skips many of the steps in List 2 and calls the appropriate array method directly. During
specialization, CMQ-NumPy not only validates the operand types, but also ensures that the
ufunc object represents the expected minimum function. Once specialized, the loading of the
ufunc object becomes redundant (see Section 4.2.2).

6.3 Automatic Generation of Derivatives

During the implementation of BINARY_OP derivatives, we noticed that the code of different
derivatives differs only at select locations. Specifically, each derivative validates its type-
specific assumptions and calls a type-specific array method. All other aspects of the code,
such as the simplified Step 6 are identical between the derivatives. For example, all derivatives
analyze certain properties of the input arrays, such as dimensions and strides, to decide
whether Step 7 or Step 8 is necessary. Similarly, the code to decide whether a derivative is
suitable for an instruction occurrence differs only in details.

F. Berlakovich and S. Brunthaler 6:17

if ((PyArray_CheckExact (1hs) &&

BinOp(PyArrayHasType (NPY_DOUBLE) &&
operation="add", PyFloat_CheckExact(rhs)) ||
left_type="adouble", // symmetrical commutative case

right_type="adouble", {
result_type="NPY_DOUBLE",
loop_function="DOUBLE_add",

// Specialize for adding
// double arrays

commutative=True, }
)
(b) Automatically generated condition for spe-
(a) Specification of a derivative that adds two cializing float array addition. The highlighted
double arrays. parts are taken from the derivative description.

Figure 5 Derivative description (left) and the automatically generated specialization condition
(right).

To reduce code duplication, we wrote a code generator in Python that uses Mako templates
to generate the various cases and derivatives. The code generator takes a specification of
the derivatives produces specialization conditions and derivative implementations. Figure 5a
shows an example of the double-array addition derivative specification. The specification
defines the required types and the concrete array method to use in the derivative implemen-
tation. The code generator automatically generates derivative implementations and their
corresponding specialization conditions. Figure 5b shows an example of a generated condition.
Since addition is a commutative operation, the code generator automatically generates the
symmetric case as well.

The code generator not only reduced the amount of duplicate code, but also allowed
us to experiment with different implementation variants. For example, we tested a variant
that forcefully inlines all function calls within the derivative implementations and found the
performance difference to be negligible.

6.4 Per-Instruction Caches in NumPy

In Section 4.2.3 we described how CMQ enables an instruction-occurrence-specific caching
via an occurence cache. CMQ-NumPy uses the occurence cache in optimized BINARY_OP
and BINARY_SUBSCRIPT derivatives. Specifically, the occurence cache we implemented in
the OINT in CPython allows CMQ-NumPy to store a pointer for each optimized instruction.

The BINARY_OP derivatives use the occurence cache keep a scratch array for results.
The idea is based on the observation that BINARY_OP instructions often allocate short-lived
arrays for the operation result and, thus, cause pressure on the memory subsystem. We
gauge the effectiveness of the occurence cache in Section 7.4. Whenever our optimized
BINARY_OP derivatives allocate a new result array, they store a pointer to the array in the
occurence cache. In subsequent executions, the derivatives try to reuse the cached array
instead of allocating a new one. Reusing a cached array is possible whenever the cached
array has a reference count of 1, meaning that the cache is the only reference to the object.
The result cache trades memory for CPU cycles by avoiding the recurring allocation and
deallocation of frequently used objects.

In contrast, the BINARY_SUBSCRIPT derivatives use the occurence cache to store infor-
mation precomputed at specialization time. In CPython, a BINARY_SUBSCRIPT instruction
uses a subscript object to access subscriptable, such as lists or NumPy arrays. NumPy extends

ECOOP 2024

6:18

Cross Module Quickening — The Curious Case of C Extensions

CPython’s subscripting mechanism with the notion of multidimensional subscripts. For exam-
ple, the expression array[1:, 2:] selects all sub-arrays beginning at the second and from
each selected subarray all elements beginning at the third. Under the hood, the expression
[1:, 2:] is a syntactic sugar for [(slice(1, None, None), slice(2, None, None)]. In
other words, the subscript object is a tuple consisting of two slice objects. While this syntax
is highly expressive and makes it easy to navigate nested arrays, the flexibility comes at a
cost. For every such subscript access, CPython needs to construct the participating objects,
i.e., the slices and the tuple, and then call NumPy to handle the subscript on a NumPy array.
The subscript object construction alone constitutes 7 instructions. Next, NumPy needs to
deconstruct the subscript object again to compute an index structure that is later used to
access the array. Similar to the case of resolving ufuncs (see List 2), the computation in
NumPy is generic and needs to handle several corner cases.

An important observation is that all objects participating in the above subscript operation,
except the array, are constant. To that end, CMQ-NumPy move the computation of the
index structure from instruction execution to specialization time. During specialization
of a BINARY_SUBSCRIPT instruction, CMQ-NumPy analyzes the instructions constructing
the subscript object. If the subscript object is constant, CMQ-NumPy precomputes the
index structure and stores a pointer to the structure in the occurence cache. Instead of
recomputing the structure, the specialized BINARY_SUBSCRIPT derivatives read the index
structure from the cache.

7 Evaluation

7.1 System Configuration

Our changes are based on CPython 3.12.0 and NumPy 1.26.4. To guarantee a fair comparison
and equal compilation parameters, we also built the baseline, i.e., CPython 3.12.0 and NumPy
1.26.4, from source.

We perform our evaluation on three different machines, summarized in Table 2. Machine
EPYC is equipped with an AMD EPYC Rome 7H12 CPU running at 3.2 GHz, 1TB DDR4
RAM running at 3200 MHz, and Debian 12. Machine i7 is equipped with an Intel Core
i7-8559U CPU running at 2.7 GHz, 64GB DDR4 RAM running at 2667 MHz, and Debian
12. Machine M3 is equipped with an Apple 16 core M3 CPU running at 4.05 GHz, 128GB
RAM, and macOS 14. On each machine we compiled CPython and NumPy with the bundled
GCC (12.2.0) and GNU linker (2.40).

7.2 Experimental Design

CMQ consists of a modified CPython instance that supports the Optimization Interface and
a modified NumPy package that leverages the Optimization Interface.

We evaluate the performance improvements of CMQ based on the NPBench benchmark
framework [41]. NPBench includes compute-intensive NumPy benchmarks and aims to com-
pare the performance of NumPy-specific optimizing compilers. While our technique is not
NumPy-specific, these benchmarks allow us to properly evaluate the afforded performance
improvement. In addition to the benchmarks already included with NPBench, we integrated
NumPy Phoronix benchmarks from openbenchmarking [33]. Like the included benchmarks,
the Phoronix benchmarks consist of scientific kernels that make intensive use of NumPy.

NPBench supports differently sized input presets for the included benchmarks. For our
evaluation, we used the paper preset, which was also used during the evaluation of NPBench
itself [41]. The Phoronix benchmarks have their input sizes hardcoded into the benchmark.

F. Berlakovich and S. Brunthaler

We run all benchmarks with the NPBench test runner. The runner starts each benchmark
in a new CPython process and repeats the benchmark a given number of times with the
CPython timeit package. In addition, NPBench verifies that the results of an optimized
implementation and the NumPy default implementation are equal. We modified NPBench to
use our customized CPython and NumPy while measuring CMQ’s performance.

To reduce noise, we limit NumPy to a single thread and pin the benchmark run to a single
CPU with cset. Note that this restriction does not influence CMQ’s relative performance
improvement over standard NumPy. Distributing workloads to multiple threads happens
in NumPy components unaffected by CmMQ. We verified this experimentally by comparing
runs with and without threading and found the differences to be within measurement noise
(2-3%). Without limiting the number of threads (e.g., to 16) in our experiments, NumPy used
all available logical CPUs, even for trivial tasks. For the EPYC Rome machine this meant
distributing tasks to 256 logical CPUs, effectively overloading the machine synchronization
overhead.

We repeat each NPBench benchmark 20 times and limit the execution time of a single
run to 120s. Since the Phoronix are short-running, we repeat each benchmark run 100
times. We kept the internal iteration count of 40 for the Phoronix benchmarks. With this
configuration, one benchmark (3mm) timed out in the baseline on all machines.

7.3 Performance

Figure 6 and Figure 7 shows the performance improvement of CMQ over the baseline for the
NPBench and Phoronix benchmarks, respectively. Due to space constraints, we show only
benchmarks where CMQ-NumPy could specialize at least one instruction. We give a complete
list of benchmark results in Appendix A.

Whereas some NPBench benchmarks, such as adist, show no improvement, CMQ improves
the performance of other benchmarks by a factor of up to 2.84. The improvements are similar
on different machines, with the notable differences of heat3d and floydwar. On these two
benchmarks, CMQ achieves no measurable performance improvement on M3. For the NPBench
benchmarks, we report a geometric mean improvement for the machines EPYC, i7, and M3 of
1.11x, 1.10x and 1.08x, respectively.

For the Phoronix benchmarks the situation is similar. Some benchmarks, such as
periodic_dist, show an improvement of up to 1.94, whereas other benchmarks, such as
eucl_dist show no improvement. One difference to the NPBench benchmarks is that certain
benchmarks show a slight decrease in performance, most notably pairwise and rosen. For
the Phoronix benchmarks, we report a geometric mean improvement for the machines EPYC,
i7, and M3 of 1.10x, 1.08x and 1.06x, respectively.

We discuss these differences in Section 8.1.

7.4 Dynamic Locality Analysis

To analyze type locality and cache stability, we collected various statistics on the EPYC
machine over all NPBench benchmarks with 20 repetitions. We found the operand types on
which the specialized derivatives speculate to be 100% stable except for resnet. In resnet,
3 operations had to deoptimize due to a changed operand type.

Table 1 shows relevant metrics for the BINARY_SUBSCRIPT result cache (see Section 6.4).

The other derivatives (e.g., BINARY_SUBSCRIPT) cache only static data (e.g., the computed
index structure) and, therefore, never need to invalidate the cache. For brevity, Table 1 shows
only benchmarks in which cache invalidations occurred. REFCNT means the cached array had

a reference count greater than one. SHAPE means the array did not have the expected shape.

6:19

ECOOP 2024

6:20 Cross Module Quickening — The Curious Case of C Extensions

& S &
v ey ~
1.5 3
E Em EPYC
E1.4§ . 7
g 1.3 3 - M3
0 3
o =
£ 1.1 7
1.0 3 i ++-+=-f.--i.--.,...f +-+-.i1
L S S A A S A O O A S
>y .
rz?w@wo'\/oxéi\wo'»#.c?o”r}'é”ﬁ@y
A S S A A A A S ZA K S SR
’b’A'g'\EJ&&A@b@(’t?%bé% © @
S AP S o
o
N
1.5 3
L 143
S E
g =
21.23
o =
= i o i
1.0§ l*-l-.‘l“l"l'l'd'l"-lr T
[0 S S SR S VS A G O S S A
F & &y sy &gy syiEs
> i) o) > 0) % N % A
A S S v Y ®
& g g8 &

Benchmark Geometric mean
I 1.11 BN 1.10 W 1.08

Figure 6 The performance improvement of CMQ-NumPy over the baseline for NPBench benchmarks
with at least one specialized instruction. The black lines at the top of the colored bars show the
95% bootstrapping confidence interval with 1000 samples. For the bars that do not fit within the
figure, a label on top of the bar shows their value.

In cavtflow, chanflow and heat3d a cached array had a reference count greater than 1,
indicating that the array is not in fact temporary. In syr2k, the cached array’s properties
did not match the properties required for the result. CMQ-NumPy keeps a cache counter to
detect cases where the cache is invalidated frequently and disables an instruction cache after
100 invalidations. The counter disabled the cache in syr2k for one instruction and in vadv
in 8 instructions. We found this optimization to improve cavtflow’s performance by about
10%.

7.5 Implementation Effort

The changes in CPython consist of 1,136 insertions and 51 deletions across 27 files. These
changes include the code for statistics, debugging routines, comments and newlines, but
exclude files generated by the CPython build. The OINT consists of a hook used by C
extensions to register, two callbacks provided by the C extension and three functions the C
extension can use to specialize instructions.

F. Berlakovich and S. Brunthaler

1.5
1.4
1.3
1.2
1.1
1.0
0.9
0.8

Improvement

1.5
1.4
1.3
1.2
1.1
1.0
0.9

Improvement

& Geometric mean
Benchmark EEN 110 BN 108 W 1.06

Figure 7 The performance improvement of CMQ-NumPy over the baseline for Phoronix benchmarks
with at least one specialized instruction. The black lines at the top of the colored bars show the
95% bootstrapping confidence interval with 1000 samples.

The changes in NumPy consist of roughly 1200 lines of C, 400 lines of Python and 900 lines of
template code. These changes include the code for statistics and performance measurements,
derivative templates, debugging routines, comments and newlines, but exclude generated
files. Implementing these changes took us roughly 3 months, with no prior experience with
NumPy. NumPy consists of roughly 163,000 lines of code, which means that our extension
(the C and template code) comprise less than 1% of NumPy’s code base. The template
code for our optimized derivatives contains primarily rearrangements of existing NumPy code
(e.g., applying a ufunc to an array with an iterator).

8 Discussion

This section discusses the evaluation results, in particular the varying performance results,
as well as what we believe to be relevant threats to validity.

8.1 Performance

Figure 6 and Figure 7 detail the performance results obtained on three different CPU
architectures. Although the performance is promising in some cases, it is indistinguishable
from measurement noise in other cases. A closer look to what happens under the hood is
required to analyze these differences.

6:21

ECOOP 2024

6:22

Cross Module Quickening — The Curious Case of C Extensions

Table 1 CMQ-NumPy result cache statistics Table 2 Configuration of the benchmarking

(see Section 7.4). machines used in Section 7.3.

Benchmark Misses Reason Machine CPU RAM

cavtflow 308 REFCNT EPYC AMD EPYC 7TH12 1TB

chanflow 308 REFCNT i7 Intel Core i7-8559U 64 GB

heat3d 132 REFCNT M3 Apple M3 Max 128 GB

syr2k 100 SHAPE

vadv 844 REFCNT

An analysis of the executed interpreter instruction frequencies shows that CMmQ-indifferent
benchmarks execute fewer interpreter instructions. This difference also reduces the impact
of CMQ optimizations. The adi benchmark, for example, executes most of its instructions in
the kernel function, with each interpreter instruction executed about 20,000 times, with
20 iterations. In the fdtd_2d benchmark, on the other hand, the comparative interpreter
execution count is only 500 times. This order-of-magnitude difference provides part of the
answer.

The interpreter instruction execution frequency aside, the fdtd_2d benchmark provides
another part of the answer. With the paper preset, £dtd_2d operates on large matrices
having 1,000 rows of 1,200 columns. With an element size of a double floating point number,
such a matrix spans 9,600,000 bytes, which is roughly 9 megabytes. Since this size exceeds the
limits of both most operating system page sizes, and CPU data caches, the overall execution
time is dominated by these caching effects.

To demonstrate the effect of these two variables on CMQ’s optimization potential, we
manually changed the parameters of £dtd_2d. Instead of 500 repetitions on 1,000 by 1,200
matrices, we experimented with 10,000 iterations on 200 by 220 matrices. With these
parameters, performance improved by about 20%.

On the Phoronix benchmark set (Figure 7), CMQ’s impact is less than on the NPBench
benchmarks (Figure 6). The primary reason is that many of the Phoronix benchmarks
operate on types for which we have not yet added optimized derivatives, such as 32bit floats
and NumPy’s scalar types. In other words, these benchmarks pay the small, but non-zero price
of attempted specializations without profiting from CMQ. The futile specialization attempts
are also the reason for a slight decrease in performance for e.g., the pairwise benchmark.
Compared to the NumPy benchmarks, the Phoronix benchmarks are short-running. As a
result, the overhead of specialization attempts is high compared to the benchmark runtime.
We confirmed this theory by increasing the internal iteration count, such that a single
benchmark run takes longer. We found that with longer run times, the slowdown for all but
one benchmarks approached zero. Only the slowdown of grouping remained at roughly 10%.
The slowdown remained even when disabling specialization attempts entirely and the exact
cause requires further analysis.

8.2 Implementation Effort
8.2.1 CPython

Integrating an CMQ into a language VM consists of two tasks. First, allowing C extensions
to register and subsequently calling the C extension to attempt the specialization of hot
instructions (see Section 5.2). Second, providing functionality to the C extension via the
OINT to analyze, specialize and deoptimize instructions.

F. Berlakovich and S. Brunthaler

In the case of CPython, we could reuse much of CPython’s optimization-counter infras-
tructure to trigger the optimization of hot instructions Section 5.2.1. As a result, the first
task, amounted to only about 200 lines of code. The OINT functionality for the second task
consists of analyses (e.g., for finding the originator of an argument, see Section 5.2.4) and
code for handling the optimization and deoptimization. The implementation of the OINT
made up the majority of the implementation effort in CPython and amounts to roughly 800
lines of code.

8.2.2 NumPy

In general, the implementation effort for implementing optimizations depends largely on the C
extension in question. As non-experts in NumPy, we spent the majority of the implementation
time (see Section 7.5) with understanding NumPy’s architecture as well as debugging our
implementation errors. We believe that domain experts (e.g., NumPy core developers) could
implement the optimizations not only in substantially less time, but also with less code. For
our research prototype we explicitly specified each derivative (see Section 6.3), leading to
a larger amount of boilerplate code. Instead, developers with an intimate understanding
of NumPy could generate the specifications from the ufunc operation specifications already
present in NumPy. Future research could focus on automating parts of the optimization
implementation, and thus reducing burden on C extension authors.

8.3 Threats to Validity

Although we spent a great deal of effort on making sure that both design/implementation and
evaluation are unbiased and representative of the general principle explored and demonstrated
by CMQ, the following threats to validity apply.

8.3.1 Generalization Beyond Python

Our analysis and findings focus on the CPython ecosystem. Although we believe that
these findings hold equally well for similar ecosystems, such as Lua, Ruby, or even WASM,
only a comparative investigation will be able to close this gap. Note that neither our
analysis, nor our implementation, rely on specifics of the Python interpreter. Python,
for example, uses a stack-based virtual machine interpreter architecture. Our extension-
delimited superinstructions observation and optimization (cf. Section 4.2.2) hold equally well
for register-based architectures.

The standard® Ruby interpreter YARV is architecturally similar to Python. Both are
written in C, both have bytecode interpreters, and although the YARV does not currently
perform runtime specialization, a prototype for a specializing interpreter exists [30]. We thus
believe that porting CMQ to Ruby would be relatively straightforward.

Another language VM with C extension support is the Lua VM and its optimized variant
LuaJIT. The LuaJIT VM has both a profiling interpreter and a JIT compiler and retains
compatibility with Lua C extensions. Unlike Python and Ruby, however, the LuaJIT VM
is register-based and the interpreter is written in assembly. While certainly possible, the
different architecture and low-level nature of the LuaJIT interpreter would pose an obstacle
to porting CMQ to Lua.

3 As with Python, many different Ruby implementations exist. With “standard” we are referring to the
interpreter that is part of the official Ruby distribution.

6:23

ECOOP 2024

6:24

Cross Module Quickening — The Curious Case of C Extensions

8.3.2 Generalization Beyond NumPy

Based on the domain-specificity of C extensions (cf. Section 3.1), our findings cannot
translate to other C extensions verbatim. The qualitative analysis results apply in general
(cf. Section 3.2), and also to other C extension ecosystems. The corresponding optimization
techniques explored and demonstrated for the extenders-category also translate to other C
extensions.

Our analysis for 1xm1 Python extension indicates, for example, that 1xml would benefit
from extension-delimited superinstructions that operate on native types. Note in this context
that our OINT design and implementation is not closed, but can be extended for other
use cases, and indeed we expect future work, also by other researchers, to uncover more
optimization features.

8.3.3 Performance Bias Through NPBench

We evaluate CMQ with NPBench that consists of a suite of compute-intensive scientific kernels.
These benchmarks cannot be representative of other workloads for different C extensions.
No claim to the expected speedup potential can be made on a sound scientific basis.

8.3.4 Performance Result Interpretation

The authors are not experts in optimization of mathematical kernels. The reported results
are, thus, merely indicative. An expert possessing the relevant domain expertise may see,
and actually uncover, more optimization potential.

9 Related Work

In the Python ecosystem, Numba is one way to speed up scientific Python programs, in
particular programs using NumPy. Numba is a Python JIT compiler based on the LLVM JIT
compiler framework [28]. As shown by Ziogas et al., Numba’s JIT-approach enables impressive
performance improvements for some benchmarks [41]. However, Numba supports only a
subset of Python and cannot optimize functions with incomplete type information. Cython
is a compiler that compiles a superset of Python to optimized C code and aims to narrow the
gap between writing Python code and C extensions [3]. In addition to lowering the burden of
writing C extensions, an extension to Cython could help to automatically generate optimized
derivatives for CMmQ.

Grimmer et al. take a different approach to dealing with C extensions [25]. Their Truffle
Multi-Language Runtime runs both, the host language and the C extension, on the same
language VM, on top of the Truffle framework. Running the C extension is possible through
a C interpreter implemented in Truffle [23]. In lack of a benchmark suite for C extensions,
the authors evaluate the peak performance of the Multi-Language Runtime with two Ruby
programs. A later paper suggests that the performance depends on the exact language
combination and benchmark [24]. The approach of running C extensions with a Truffle
C-Interpreter was later generalized with Sulong [32].

The work closest to ours is “Dr Wenowdis”, a system to communicate function type
information from C extensions to PyPy [7]. In their paper, the authors focus primarily
on boxing and unboxing overhead, but the principles are similar to our type-specialized
instructions (see Section 4.2.1). We believe that our work is mutually beneficial with “Dr
Wenowdis” and that the principles of CMQ could be extended to JIT compilers as well.

F. Berlakovich and S. Brunthaler

The WebAssembly Garbage Collector (WASM GC) proposal is similar in spirit to
CMQ [26]. With WASM GC, a language implementation running on a WASM engine can com-
municate information about its object layout to the WASM host engine. This additional
communication enables the WASM garbage collector to reason about and to collect guest
objects. Thus, the guest language implementation is no longer a black box to the WASM
host engine. While WASM does not have C extensions, the proposed WASM System Interface
(WASTI) fulfills a similar purpose. We believe, therefore, that CMQ’s principles could benefit
WAST as well.

10 Conclusions

We present the first analysis and exploration of C extensions for dynamic languages, ex-
emplified by the Python ecosystem. Based on this analysis, we find that the key obstacle
of a large-scale quantitative analysis is that many C extensions require their own domain
ezpertise. This domain specificity of C extensions makes them both difficult to compare and
difficult to evaluate performance against, since the domain specificity also implies a lack of
generalizable benchmark suites.

Due to this negative result, we instead focus on a qualitative analysis of Python’s C
extension ecosystem. We find that C extensions fall into three categories: (i) optimizers, (ii)
binders, and (iii) extenders. Optimizers are C extensions that could be written in Python,
but are written in C to speed up the processing. Binders are C extensions that essentially
bind Python to existing C libraries. Extenders add functionality to Python that does not
readily exist.

From a performance perspective, we find that the first two categories provide few op-
timization opportunities. This lack of opportunities is rooted in the fact that most time
is spent in the C extensions themselves. The third category, however, offers optimization
potential as evidenced by the speedups demonstrated by CMQ. Based on the example of
NumPy, we illustrate a total of three orthogonal optimization techniques.

Since our work represents, to the best of our knowledge, the first foray into optimization
across module boundaries, we expect future work efforts that extend and generalize the ideas
presented herein. We believe that a natural step would be to try integrating our findings into
just-in-time compilers. A generalization, on the other hand, would try to apply our ideas to
another dynamic language ecosystem, such as Ruby, Lua, PHP, or Perl. We furthermore
expect that the presented system will be adapted and extended by performance-conscious
extension authors, leading to new optimization opportunities down the road. Finally, even a
closed ecosystem such as JavaScript may benefit from our ideas: the runtime system and the
browser represent a form of C extension for the JavaScript virtual machine. Through similar
APIs, JavaScript engines could, thus, benefit from optimizations.

—— References

1 Scott B. Baden. High Performance Storage Reclamation in an Object-Based Memory System.
Technical Report, University of California at Berkeley, USA, May 1982.

2 Gergo Barany. Python interpreter performance deconstructed. In Proceedings of the Workshop
on Dynamic Languages and Applications, Dyla 2014, Edinburgh, United Kingdom, June 9-11,

2014, pages 5:1-5:9, Edinburgh United Kingdom, June 2014. ACM. doi:10.1145/2617548.

2617552.
3 Stefan Behnel, Robert Bradshaw, Craig Citro, Lisandro Dalcin, Dag Sverre Seljebotn, and

Kurt Smith. Cython: The best of both worlds. Comput. Sci. Eng., 13(2):31-39, March 2011.

doi:10.1109/MCSE.2010.118.

6:25

ECOOP 2024

https://doi.org/10.1145/2617548.2617552
https://doi.org/10.1145/2617548.2617552
https://doi.org/10.1109/MCSE.2010.118

6:26

Cross Module Quickening — The Curious Case of C Extensions

10

11

12

13

14

15

16

17

Felix Berlakovich. CMQ CPython implementation. Software (visited on 2024-08-29). URL:
https://github.com/fberlakovich/cmg-ae.

Felix Berlakovich. CMQ Numpy implementation. Software (visited on 2024-08-29). URL:
https://github.com/fberlakovich/cmg-numpy-ae.

Felix Berlakovich and Stefan Brunthaler. Cross-Module Quickening. Software (visited on
2024-08-29). URL: https://doi.org/10.5281/zenodo.11174717.

Maxwell Bernstein and CF Bolz-Tereick. Dr wenowdis: Specializing dynamic language C
extensions using type information. CoRR, abs/2403.02420(arXiv:2403.02420), March 2024.
doi:10.48550/arXiv.2403.02420.

Blake Griffith. A mechanism for overriding Ufuncs. URL: https://numpy.org/neps/
nep-0013-ufunc-overrides.html.

Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, Michael Leuschel, Samuele Pedroni,
and Armin Rigo. Allocation removal by partial evaluation in a tracing JIT. In Siau-Cheng
Khoo and Jeremy G. Siek, editors, Proceedings of the 2011 ACM SIGPLAN Workshop on
Partial Evaluation and Program Manipulation, PEPM 2011, Austin, TX, USA, January
24-25, 2011, PEPM ’11, pages 43-52, New York, NY, USA, January 2011. ACM. doi:
10.1145/1929501.1929508.

Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, Michael Leuschel, Samuele Pedroni,
and Armin Rigo. Runtime feedback in a meta-tracing JIT for efficient dynamic languages.
In Tan Rogers, Eric Jul, and Olivier Zendra, editors, Proceedings of the 6th Workshop on
Implementation, Compilation, Optimization of Object-Oriented Languages, Programs and
Systems, ICOOOLPS 2011, Lancaster, United Kingdom, July 26, 2011, ICOOOLPS ’11, pages
9:1-9:8, New York, NY, USA, July 2011. ACM. doi:10.1145/2069172.2069181.

Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, and Armin Rigo. Tracing the meta-level:
Pypy’s tracing JIT compiler. In Tan Rogers, editor, Proceedings of the 4th workshop on the
Implementation, Compilation, Optimization of Object-Oriented Languages and Programming
Systems, ICOOOLPS 2009, Genova, Italy, July 6, 2009, ICOOOLPS ’09, pages 18-25, New
York, NY, USA, July 2009. ACM. doi:10.1145/1565824.1565827.

Stefan Brunthaler. Virtual-machine abstraction and optimization techniques. Electronic Notes
in Theoretical Computer Science, 253(5):3-14, December 2009. doi:10.1016/j.entcs.2009.
11.011.

Stefan Brunthaler. Inline caching meets quickening. In Theo D’Hondt, editor, ECOOP 2010
— Object-Oriented Programming, 24th European Conference, Maribor, Slovenia, June 21-25,
2010. Proceedings, volume 6183 of Lecture Notes in Computer Science, pages 429-451, Berlin,
Heidelberg, 2010. Springer. doi:10.1007/978-3-642-14107-2_21.

Stefan Brunthaler. Multi-level quickening: Ten years later. CoRR, abs/2109.02958, 2021.
doi:10.48550/arXiv.2109.02958.

Lin Cheng, Berkin Ilbeyi, Carl Friedrich Bolz-Tereick, and Christopher Batten. Type freez-
ing: exploiting attribute type monomorphism in tracing JIT compilers. In CGO ’20: 18th
ACM/IEEE International Symposium on Code Generation and Optimization, San Diego, CA,
USA, February, 2020, CGO 2020, pages 16-29, New York, NY, USA, February 2020. ACM.
doi:10.1145/3368826.3377907.

Maxime Chevalier-Boisvert, Noah Gibbs, Jean Boussier, Si Xing (Alan) Wu, Aaron Patterson,
Kevin Newton, and John Hawthorn. YJIT: a basic block versioning JIT compiler for cruby.
In Gregor Richards and Manuel Rigger, editors, VMIL 2021: Proceedings of the 13th ACM
SIGPLAN International Workshop on Virtual Machines and Intermediate Languages, Virtual
Event / Chicago, IL, USA, 19 October 2021, pages 25-32, Chicago IL USA, October 2021.
ACM. doi:10.1145/3486606.3486781.

Maxime Chevalier-Boisvert, Takashi Kokubun, Noah Gibbs, Si Xing (Alan) Wu, Aaron
Patterson, and Jemma Issroff. Evaluating yjit’s performance in a production context: A
pragmatic approach. In Rodrigo Bruno and Eliot Moss, editors, Proceedings of the 20th
ACM SIGPLAN International Conference on Managed Programming Languages and Runtimes,
MPLR 2023, Cascais, Portugal, 22 October 2023, MPLR 2023, pages 20-33, New York, NY,
USA, October 2023. ACM. doi:10.1145/3617651.3622982.

https://github.com/fberlakovich/cmq-ae
https://github.com/fberlakovich/cmq-numpy-ae
https://doi.org/10.5281/zenodo.11174717
https://doi.org/10.48550/arXiv.2403.02420
https://numpy.org/neps/nep-0013-ufunc-overrides.html
https://numpy.org/neps/nep-0013-ufunc-overrides.html
https://doi.org/10.1145/1929501.1929508
https://doi.org/10.1145/1929501.1929508
https://doi.org/10.1145/2069172.2069181
https://doi.org/10.1145/1565824.1565827
https://doi.org/10.1016/j.entcs.2009.11.011
https://doi.org/10.1016/j.entcs.2009.11.011
https://doi.org/10.1007/978-3-642-14107-2_21
https://doi.org/10.48550/arXiv.2109.02958
https://doi.org/10.1145/3368826.3377907
https://doi.org/10.1145/3486606.3486781
https://doi.org/10.1145/3617651.3622982

F. Berlakovich and S. Brunthaler

18

19

20

21

22
23

24

25

26

27

28

29

30

31

32

L. Peter Deutsch and Allan M. Schiffman. Efficient implementation of the smalltalk-80 system.
In Ken Kennedy, Mary S. Van Deusen, and Larry Landweber, editors, Conference Record of
the Eleventh Annual ACM Symposium on Principles of Programming Languages, Salt Lake
City, Utah, USA, January 1984, pages 297-302, New York, New York, USA, 1984. ACM Press.
ISSN: 07308566. doi:10.1145/800017.800542.

NumPy Developers. Universal functions (ufunc) basics — NumPy v1.26 Manual. URL:
https://numpy.org/doc/1.26/user/basics.ufuncs.html#type-casting-rules.

M. Anton Ertl and David Gregg. The behavior of efficient virtual machine interpreters
on modern architectures. In Rizos Sakellariou, John A. Keane, John R. Gurd, and Len
Freeman, editors, Furo-Par 2001: Parallel Processing, 7th International Furo-Par Conference
Manchester, UK August 28-31, 2001, Proceedings, volume 2150 of Lecture Notes in Computer
Science, pages 403-412, Berlin, Heidelberg, 2001. Springer. doi:10.1007/3-540-44681-8_59.
M. Anton Ertl and David Gregg. Optimizing indirect branch prediction accuracy in virtual
machine interpreters. In Ron Cytron and Rajiv Gupta, editors, Proceedings of the ACM
SIGPLAN 2003 Conference on Programming Language Design and Implementation 2003, San
Diego, California, USA, June 9-11, 2003, PLDI ’03, pages 278-288, New York, NY, USA,
May 2003. ACM. doi:10.1145/781131.781162.

Christopher Flynn. PyPI Download Stats. URL: https://pypistats.org/top.

Matthias Grimmer, Manuel Rigger, Roland Schatz, Lukas Stadler, and Hanspeter M&ssenbock.
Trufflec: dynamic execution of C on a java virtual machine. In Joanna Kolodziej and Bruce R.
Childers, editors, 2014 International Conference on Principles and Practices of Programming
on the Java Platform Virtual Machines, Languages and Tools, PPPJ ’14, Cracow, Poland,
September 23-26, 2014, PPPJ ’14, pages 17-26, New York, NY, USA, September 2014. ACM.
doi:10.1145/2647508.2647528.

Matthias Grimmer, Roland Schatz, Chris Seaton, Thomas Wirthinger, and Mikel Lujan.
Cross-language interoperability in a multi-language runtime. ACM Trans. Program. Lang.
Syst., 40(2):8:1-8:43, May 2018. doi:10.1145/3201898.

Matthias Grimmer, Chris Seaton, Thomas Wiirthinger, and Hanspeter Mossenbéck. Dynami-
cally composing languages in a modular way: supporting C extensions for dynamic languages. In
Robert B. France, Sudipto Ghosh, and Gary T. Leavens, editors, Proceedings of the 14th Interna-
tional Conference on Modularity, MODULARITY 2015, Fort Collins, CO, USA, March 16-19,
2015, pages 1-13, Fort Collins CO USA, March 2015. ACM. doi:10.1145/2724525.2728790.
WebAssembly Community Group and Andreas (editor) Rossberg. WebAssembly Core Specifi-
cation. Technical report, W3C, 2024.

Stefan Hoyer, Matthew Rocklin, Marten van Kerkwijk, and Hameer Abbasi. A dis-
patch mechanism for numpy’s high level array functions. URL: https://numpy.org/neps/
nep-0018-array-function-protocol.html.

Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: A LLVM-based python JIT
compiler. In Hal Finkel, editor, Proceedings of the Second Workshop on the LLVM Compiler
Infrastructure in HPC, LLVM 2015, Austin, Texas, USA, November 15, 2015, LLVM ’15,
pages 7:1-7:6, New York, NY, USA, November 2015. ACM. doi:10.1145/2833157.2833162.
Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. The Java Series.
Addison-Wesley, Reading, Mass., 1. print edition, 1997.

Vladimir Makarov. A Faster CRuby interpreter with dynamically specialized IR. URL:
https://rubykaigi.org/2022.

Nagy Mostafa, Chandra Krintz, Calin Cascaval, David Edelsohn, Priya Nagpurkar, and Peng
Wu. Understanding the Potential of Interpreter-based Optimizations for Python. Technical
report, University of California, Santa Barbara, September 2010.

Manuel Rigger, Matthias Grimmer, and Hanspeter Mossenbock. Sulong — Execution of
LLVM-based languages on the JVM: position paper. In Proceedings of the 11th Workshop
on Implementation, Compilation, Optimization of Object-Oriented Languages, Programs and
Systems, ICOOOLPS@QECOOP 2016, Rome, Italy, July 17-22, 2016, ICOOOLPS ’16, pages
7:1-7:4, New York, NY, USA, July 2016. ACM. doi:10.1145/3012408.3012416.

6:27

ECOOP 2024

https://doi.org/10.1145/800017.800542
https://numpy.org/doc/1.26/user/basics.ufuncs.html#type-casting-rules
https://doi.org/10.1007/3-540-44681-8_59
https://doi.org/10.1145/781131.781162
https://pypistats.org/top
https://doi.org/10.1145/2647508.2647528
https://doi.org/10.1145/3201898
https://doi.org/10.1145/2724525.2728790
https://numpy.org/neps/nep-0018-array-function-protocol.html
https://numpy.org/neps/nep-0018-array-function-protocol.html
https://doi.org/10.1145/2833157.2833162
https://rubykaigi.org/2022
https://doi.org/10.1145/3012408.3012416

6:28

Cross Module Quickening — The Curious Case of C Extensions

33

34

35

36

37

38

39

40

41

Victor Rodriguez Bahena. Numpy Benchmark Benchmark — OpenBenchmarking.org. URL:
https://openbenchmarking.org/test/pts/numpy.

Christopher Graham Seaton. Specialising dynamic techniques for implementing the Ruby
programming language. PhD thesis, University of Manchester, UK, 2015. URL: https:
//ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.674722.

Mark Shannon. The construction of high-performance virtual machines for dynamic languages.
PhD thesis, University of Glasgow, UK, 2011. URL: http://theses.gla.ac.uk/2975/.
Tiobe. index ert TIOBE — The Software Quality Company, 2021. URL: https://www.tiobe.
com/tiobe-index/.

Christian Wimmer and Stefan Brunthaler. Zippy on truffle: a fast and simple implementation of
python. In Antony L. Hosking and Patrick Th. Eugster, editors, SPLASH’13 - The Proceedings
of the 2018 Companion Publication for Conference on Systems, Programming, & Applications:
Software for Humanity, Indianapolis, IN, USA, October 26-31, 2013, pages 17-18, Indianapolis
Indiana USA, October 2013. ACM. doi:10.1145/2508075.2514572.

Qiang Zhang, Lei Xu, and Baowen Xu. Regcpython: A register-based python interpreter
for better performance. ACM Trans. Archit. Code Optim., 20(1):14:1-14:25, March 2023.
doi:10.1145/3568973.

Qiang Zhang, Lei Xu, Xiangyu Zhang, and Baowen Xu. Quantifying the interpretation
overhead of python. Sci. Comput. Program., 215:102759, March 2022. doi:10.1016/j.scico.
2021.102759.

Wei Zhang, Per Larsen, Stefan Brunthaler, and Michael Franz. Accelerating iterators in
optimizing AST interpreters. ACM SIGPLAN Notices, 49(10):727-743, December 2014.
doi:10.1145/2660193.2660223.

Alexandros Nikolaos Ziogas, Tal Ben-Nun, Timo Schneider, and Torsten Hoefler. Npbench:
a benchmarking suite for high-performance numpy. In Huiyang Zhou, Jose Moreira, Frank
Mueller, and Yoav Etsion, editors, IC\S ’21: 2021 International Conference on Supercomputing,
Virtual Event, USA, June 14-17, 2021, ICS 21, pages 63-74, New York, NY, USA, June 2021.
ACM. doi:10.1145/3447818.3460360.

A All Benchmarks

Table 3 All NPBench benchmark results.

benchmark EPYC i7 M3 | benchmark EPYC i7 M3 | benchmark EPYC i7 M3

adi 2.82 2,55 2.50 | durbin 1.02 1.07 1.02 | mvt 0.98 1.00 1.00
adist 0.98 1.01 1.03 | fdtd_2d 0.98 0.98 0.99 | nbody 1.04 1.04 1.07
atax 1.00 1.01 1.10 | floydwar 1.37 1.40 1.00 | npgofast 1.00 1.00 1.01
azimhist 099 0.97 1.00 | gemm 1.00 1.00 1.00 | nussinov 0.95 0.99 0.99
azimnaiv 1.01 096 1.01 | gemver 1.03 0.96 1.03 | resnet 0.99 096 1.00
bicg 0.99 1.00 0.96 | gesummv 1.00 1.00 0.93 | seidel2d 0.99 1.02 0.98
cavtflow 1.24 1.09 1.22 | gramschm 1.09 1.11 1.07 | softmax 1.00 1.02 0.97
chanflow 1.56 1.33 1.36 | hdiff 0.99 1.11 1.50 | spmv 1.02 1.08 1.03
cholesky 0.97 0.99 1.00 | heat3d 1.17 1.06 0.98 | sselfeng 0.99 1.15 0.99
cholesky?2 1.17 1.18 1.00 | jacobild 1.08 1.09 1.04 | sthamfft 1.03 1.00 1.01
clipping 1.00 1.00 1.01 | jacobi2d 1.07 1.00 0.99 | symm 1.07 119 1.05
coninteg 1.00 0.99 1.00 | lenet 098 1.05 1.00 | syr2k 1.09 1.12 1.10
correlat 1.01 099 1.00 | 1lu 1.00 1.06 0.98 | syrk 1.14 124 1.14
covarian 1.01 1.01 1.00 | ludcmp 0.99 1.01 0.98 | trisolv 1.00 1.02 0.83
crcl6 1.01 096 0.97 | mandell 093 1.00 1.00 | trmm 096 093 0.99
deriche 1.04 1.01 1.04 | mandel2 091 0.99 0.96 | vadv 1.01 0.98 0.99
doitgen 1.01 1.02 0.99 | mlp 1.00 1.03 0.96

Geomean 1.05 1.06 1.04

https://openbenchmarking.org/test/pts/numpy
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.674722
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.674722
http://theses.gla.ac.uk/2975/
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://doi.org/10.1145/2508075.2514572
https://doi.org/10.1145/3568973
https://doi.org/10.1016/j.scico.2021.102759
https://doi.org/10.1016/j.scico.2021.102759
https://doi.org/10.1145/2660193.2660223
https://doi.org/10.1145/3447818.3460360

F. Berlakovich and S. Brunthaler

Table 4 All Phoronix benchmark results.

benchmark EPYC i7 M3 ‘ benchmark EPYC i7 M3 | benchmark EPYC i7 M3
arc_dist. 1.00 1.01 1.10 | 1inorm 1.00 1.00 0.96 | repeating 0.93 1.00 0.97
check_mask 0.98 1.07 0.98 | 12norm 0.96 1.01 1.04 | rev._cumsum 1.00 1.00 1.54
create_grid 1.05 1.00 1.00 | laplacien 0.93 1.08 0.98 | rosen 1.14 0.86 1.00
cronbach 0.97 096 0.97 | local_max 0.97 096 0.98 | slowparts 112 1.10 1.13
diffusion 1.16 1.07 1.13 | log_like 1.00 1.00 1.02 | spec.conv. 1.43 145 0.99
eucl-dist 1.00 0.97 0.97 | 1stsqr 1.13 0.85 1.04 | vibr_energy 1.04 1.01 1.00
evolve 0.97 1.00 1.03 | make_dec 1.06 1.12 1.08 | wave 1.36 1.32 1.34
grayscott 0.97 1.04 1.01 | mult_sum 1.12 1.17 1.09 | wdist 1.36 1.35 1.29
grouping 0.91 099 0.99 | norm-comp 0.99 0.99 0.99

harris 0.94 098 0.72 | pairwise 094 082 0.92

hasting 1.00 1.00 0.95 | perio_dist 1.79 190 1.94

Geomean 1.06 1.05 1.05

6:29

ECOOP 2024

	1 Motivation
	2 Background
	2.1 C Extensions
	2.2 Type Feedback via Inline Caching
	2.3 Quickening: Instruction Rewriting to Capture Runtime Knowledge
	2.4 Inline Caching and Quickening in Python

	3 C extensions of Dynamic Languages
	3.1 Domain Specificity of C Extensions
	3.2 Of Optimizers, Binders, and Extenders
	3.3 Exploring Extenders
	3.4 Summary of Observations

	4 Design of Cross-Module Quickening
	4.1 Optimization Interface
	4.1.1 Validating Assumptions and Deoptimization

	4.2 Cross-Module Optimization Opportunities
	4.2.1 Type-specialized Instructions
	4.2.2 Extension-delimited Superinstructions
	4.2.3 Caching Between Instruction Executions

	5 Implementation of Cross-Module Quickening in CPython
	5.1 CPython in a Nutshell
	5.2 Integration with Cross-Module Quickening
	5.2.1 Specializing Hot Instructions
	5.2.2 External opcode handlers
	5.2.3 Dealing with a Limited Opcode Space
	5.2.4 Implementing Extension-Delimited Superinstructions
	5.2.5 Deoptimization in CPython

	6 Implementation of Cross-Module Quickening in NumPy
	6.1 NumPy in a Nutshell
	6.2 Exploiting ufunc Type Stability
	6.3 Automatic Generation of Derivatives
	6.4 Per-Instruction Caches in NumPy

	7 Evaluation
	7.1 System Configuration
	7.2 Experimental Design
	7.3 Performance
	7.4 Dynamic Locality Analysis
	7.5 Implementation Effort

	8 Discussion
	8.1 Performance
	8.2 Implementation Effort
	8.2.1 CPython
	8.2.2 NumPy

	8.3 Threats to Validity
	8.3.1 Generalization Beyond Python
	8.3.2 Generalization Beyond NumPy
	8.3.3 Performance Bias Through NPBench
	8.3.4 Performance Result Interpretation

	9 Related Work
	10 Conclusions
	A All Benchmarks

