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ABSTRACT
With the advent of JIT compilers, code-injection attacks have seen a
revival in the form of JIT spraying. JIT spraying enables an attacker
to inject gadgets into executable memory, effectively sidestepping
W⊕X and ASLR.

In response to JIT spraying, constant blinding has emerged as
a conceptually straightforward and performance friendly defense.
Unfortunately, increasingly sophisticated attacks have pinpointed
the shortcomings of existing constant blinding implementations.

In this paper we present our constant blinding implementation
in the GraalVM compiler, enabling constant blinding across a wide
range of languages. Our implementation takes insights from the last
decade of research on the security of constant blinding into account.
We discuss important design decisions and trade-offs as well as
the practical implementation issues encountered when implement-
ing constant blinding for GraalVM. We evaluate the performance
impact of our implementation with different configurations and
demonstrate its effectiveness by fuzzing for unblinded constants.
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1 INTRODUCTION
Over the last decade, just-in-time (JIT) compilers have continuously
gained in popularity by boosting the performance of language
implementations into unprecedented heights [5]. JIT compilers
improve performance by compiling the input program to native
machine code just in time, that is, at runtime. This runtime code
generation, however, has resurrected a type of attack that was al-
ready believed to be a relic of the past: code injection. In the context
of JIT compilers, code injection is called JIT spraying and allows
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an attacker to control not only the program inputs, but also, to
a certain extent, the generated machine code. At the core of JIT
spraying is the attacker’s ability to predict the machine code result-
ing from carefully crafted input programs. The JIT spraying attack
was initially demonstrated on Adobe’s ActionScript JIT compiler
but has since been ported to different languages VMs, such as the
Linux eBPF VM, Webkit JSC, or Spidermonkey [6, 19, 25, 26].

One of the most popular language VMs is the Java HotSpot VM.
With GraalVM, a single compiler allows Java and a wide range of
other languages to target the HotSpot VM as well as native libraries
and executables that can be embedded in a variety of scenarios
(see Section 2.2). GraalVM’s polyglot nature and its ability to be
embedded into other software makes it an attractive choice for
embedders. To strengthen GraalVM’s resilience against untrusted
code execution, we add constant blinding to the GraalVM compiler.

Constant blinding is a battle-proven defense against JIT spraying,
which invalidates attacker predictions by adding randomness to the
compilation process. Although constant blinding is conceptually
straightforward, a wealth of attacks demonstrates that the devil is
in the details [4, 19–22, 28].

In this paper we present our implementation of constant blinding
in the GraalVM compiler, which is part of the GraalVM Enterprise
Edition starting with version 21.3.0. We explain the general design
decisions and pitfalls and show how our implementation relates
to known attacks against constant blinding. In addition, we show
how our implementation deals with HotSpot’s peculiarities and
how we integrate constant blinding into the GraalVM compiler’s
optimization pipeline.

In summary, we make the following contributions:

• We implement constant blinding in a polyglot runtime, bring-
ing it to languages that were lacking JIT sprayingmitigations
so far.

• We discuss important design decisions, highlight issues faced
in practice and explain how we tackled them in our imple-
mentation.

• Our implementation of constant blinding can be tuned based
on a risk/performance trade-off by allowing embedders to
specify the minimum size of constants that will be blinded.

• We evaluate both the performance overhead of our imple-
mentation across different configurations as well as its effec-
tiveness.

2 BACKGROUND
2.1 JIT spraying
Thewidespread adoption ofW⊕X andASLR has considerably raised
the bar for attackers to mount a successful attack. Unfortunately, in
the context of JIT compilation the effectiveness of both defenses is
weakened significantly. JIT compilers allow users to provide source
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code and, given the source code is valid, compile it to machine code.
From an attacker’s perspective, JIT compilers compile attacker-
controlled inputs to predictable bytes in executable memory.

In an attack called JIT spraying an attacker leverages the pre-
dictable compilation by feeding malicious input programs into the
JIT compiler, thereby forcing it to emit code containing ROP gad-
gets [6]. JIT spraying is problematic for two reasons. First, with
JIT spraying an attacker is no longer limited to gadgets already
present in the attacked process. JIT spraying enables an attacker to
inject new gadgets into executable memory, thus bypassing W⊕X,
which only protects statically compiled parts of the application.
Second, JIT spraying allows an attacker to generate a large number
of gadget copies. As each additional gadget copy increases the odds
of hitting a gadget by chance, JIT spraying effectively weakens
the security guarantees afforded by ASLR. With an abundance of
gadget copies available an attacker no longer needs to know the
exact gadget location, but can guess with a high chance of success.

Since its initial demonstration in 2010 [6], the JIT spraying at-
tack has been the subject of active research. Different kinds of
defenses [1, 8, 13, 15, 16, 22] stand against increasingly resilient
attack variants [4, 19–21]. Gawlik and Holz provide a more detailed
overview of attacks on JIT compilers in general and JIT spraying
in particular [14].

2.2 GraalVM
GraalVM is a suite of polyglot runtime environment technologies
fromOracle Labs, built around the GraalVM compiler. The GraalVM
compiler can target the HotSpot Java VM, replacing its standard JIT
compiler. Alternatively, GraalVM can build native images: A native
image contains a heap snapshot of an application after startup
as well as all reachable code compiled ahead-of-time using the
GraalVM compiler [29]. The heap snapshot and the compiled code
are then bundled as a binary executable or shared library together
with a component called SubstrateVM. SubstrateVM implements
the necessary runtime services (e.g., garbage collector) otherwise
provided by a Java VM.

The GraalVM compiler directly compiles JVM bytecode for Java
and other JVM languages like Scala. Further polyglot capabilities are
provided using Truffle, a framework for implementing languages.
Truffle performs partial evaluation on language implementations,
transforming each language’s code into a form that can be directly
compiled to high-performance machine code using the GraalVM
compiler [31]. GraalVM comes with a number of Truffle language
implementations, including Javascript, Python, Ruby, and LLVM IR.
Native images of either Java code or Truffle language engines can
be run stand-alone or embedded in regular native code applications
as shared libraries.

GraalVM is available as a closed source enterprise edition as well
as an open source community edition1.

3 THREAT MODEL
Our constant blinding implementation for the GraalVM compiler
builds on the following assumptions and threat model:

• The adversary has access to a memory corruption vulnera-
bility that enables control-flow hijacking.

1https://github.com/oracle/graal/

• The adversary can freely choose the source code to execute
on GraalVM.

• The adversary knows the system configuration of the target
system. Specifically, the adversary knows the exact version
and configuration of GraalVM as well as the target system’s
architecture.

• The system is protected against conventional code injection
with W⊕X or DEP.

In this paper we focus on the danger emanating from attacks that
leverage JIT spraying with constants to inject gadgets into exe-
cutable memory. We do not consider gadgets found in instructions
not related to constants. Similarly, attacks that chain gadgets found
outside of JIT compiled code (e.g., conventional code-reuse attacks)
are out of scope.

4 GRAALVM CONSTANT BLINDING
In Section 2.1 we saw that attackers can abuse the predictable com-
pilation of programs fed into the JIT compiler to control bytes in
executable memory. Constants in the input program are a particu-
larly attractive target for such an attack, since JIT compilers often
include them verbatim in the machine code. Constant blinding aims
to invalidate an attacker’s predictions by introducing randomness
into the compilation process [18]. Specifically, constant blinding
encrypts constants with a random key at compile time and decrypts
them at runtime at each occurrence. Only the encrypted version of
the constant appears verbatim in the machine code. Absent knowl-
edge of the random key, the attacker cannot predict the encrypted
constant value and, therefore, can no longer predict the resulting
bytes in executable memory.

While the principle behind constant blinding is straightforward,
a practical implementation faces interesting design decisions and
pitfalls. In the following sections we detail how we implement
constant blinding for the GraalVM compiler.

4.1 How to blind
Our constant blinding implementation consists of a phase in the
GraalVM compiler’s compilation pipeline. During compilation, the
compiler represents the input program as a graph calledHIR graph [11].
Within the HIR graph, constant values in the input program are
represented by Constant nodes. Our phase replaces Constant nodes
in the graph with BlindedConstant nodes. During the later code
generation phase, a BlindedConstant node in the graph causes the
compiler to (a) generate an encrypted constant at compile time
and (b) generate machine code to decrypt the constant at runtime.

In principle, any encryption function 𝑓 (𝑐) for which 𝑓 −1 (𝑐)
exists can be used to blind and unblind constants, respectively. Since
the decryption happens at runtime, however, the choice of 𝑓 −1 (𝑐)
directly influences the performance impact. Like other constant
blinding implementations, we chose XOR as a performance friendly
encryption and decryption function. We implement the runtime
decryption using the CPU’s xor instruction, which typically has a
low cycle count and latency. In total, two instructions are required
to decrypt an encrypted constant. For example, if the constant has
been encrypted with the random key 0xABCD and is located in the
register rdi, the following code decrypts the constant:

mov rax , 0xABCD // load the key

https://github.com/oracle/graal/


Look Ma, No Constants: Practical Constant Blinding in GraalVM EUROSEC ’22, April 5–8, 2022, RENNES, France

public static void attack () {

final int evil = 0xc358; 1

array[0xc358 - 16] = 0xa; 2

fields.f_c358 = 0xb; 3

}

class Fields {

byte f_000c , f_000d , f_000e , ..., f_c358;

}

public static Fields fields = new Fields ();

mov rax , 0xc358 1

...

; pointer to array in ebx

mov BYTE PTR [ebx *8+0xc358], 0xa 2

...

; pointer to fields in ebx

mov BYTE PTR [ebx *8+0xc358], 0xb 3

Figure 1: The compilation of a Java method attack containing attacker-controlled constant values (left) to machine code (right).
The constants are compiled to immediate values or to displacements for a array/field access (see Section 4.2.1 for details).

xor rdi , rax // decrypt the constant

Despite the efficiency of XOR, decrypting a large number of con-
stants impacts performance. To reduce the performance impact,
prior constant blinding implementations blinded only constants
with three bytes ormore [4]. The assumption behind this size restric-
tion is that 1- or 2-byte constants cannot encode useful code-reuse
gadgets. Athanasakis et al. show, however, that this assumption
does not hold in practice [4]. Therefore, we support blinding of all
constant sizes, but allow the user to configure the minimum size of
blinded constants. We discuss the performance impact of different
blinded constant sizes in Section 5.1.

Another way to decrease the performance impact of constant
blinding is to blind only a random subset of all constants. For ex-
ample, Webkit’s JSC blinds only one out of 64 constants on average.
Unfortunately, Lian et al. show that leaving constants unblinded
might open the door to a successful attack [19].

4.2 What to blind
Most of the bytes emitted by the JIT compiler are fixed by the input
language semantics and, thus, not useful to an attacker. For example,
an add operation in the source program is typically compiled to an
add machine instruction. For a byte sequence to be useful during
an attack, the attacker must be able to control its value. As an
example, consider a constant integer variable in the input program.
Such a constant variable is typically compiled to an immediate
value inlined into the machine code. Since an attacker controls
constants in the input program, she also controls the corresponding
immediate byte sequences located in executable memory.

Machine code immediates produced by constant values in the in-
put program are the most prominent example of attacker-controlled
byte sequences. However, prior work has demonstrated the impor-
tance of considering other instances of attacker-controlled byte
sequences as well [21, 28]. Our constant blinding implementation
considers the following instances of attacker-controlled byte se-
quences in the GraalVM compiler:

• constants compiled to inline immediate values in machine
code;

• constants embedded into executable memory as data;
• composite constants.

In the following subsections we explain each of these cases in
more detail. Our running example is an attacker trying to embed

the byte sequence 58 c3, which encodes the x86-64 instructions
for the ROP gadget pop rax; ret.

4.2.1 Immediate values. JIT compilers often compile constant val-
ues in the input program to immediates inlined in the machine code.
As an example consider the Java method attack and its compiled
version in Figure 1. The value of the constant evil is embedded
verbatim into the machine code (see 1 ). Due to x86-64’s little-
endian byte order, the embedded value 0𝑥𝑐358 will be encoded as
the hexadecimal sequence 58 c3 00 00 in order of increasing
memory addresses.

Another example is the constant array index expression (see 2 ).
Note that the index expression uses a value 16 bytes smaller than
the desired gadget to account for the array header offset that is
automatically added by the compiler.

In the third example the desired constant does not appear ver-
batim in the input program. Instead, the attacker leverages a field
access to a specially crafted class (see 3 ). The machine code of
such an access contains an immediate value that encodes the off-
set of the field within the class. Since the attacker can supply an
arbitrary class, she can control the exact offset used in the machine
code. The byte-sized fields are numbered from 0𝑥000𝑐 to account
for the 12-byte object header.

Our constant blinding implementation handles these cases uni-
formly by blinding all attacker controlled constants, including ad-
dress offsets, that produce machine code immediates.

4.2.2 Data embedded in code pages. Immediates in the machine
code are generally limited in size. For example, with the exception
of movabs, all instructions on the x86-64 platform support only 32
bit immediates. Immediates on ARM are even limited to 12 bits. As a
result, code operating on constant values larger than the supported
immediate size must load these constants from memory. For exam-
ple, instead of using immediates, the GraalVM compiler compiles
accesses to floating point values as PC-relative memory accesses.
To keep the PC-relative offsets short and the resulting instructions
compact, the target VM may choose to embed the constant data
into the code page.

Another type of data that can be embedded into code pages
are frame states. Frame states are part of GraalVM’s speculative
optimization infrastructure. The compiler can compile code spec-
ulatively under assumptions like certain exceptions never being
thrown or certain parts of the code never being reached. If such an
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assumption ever becomes invalid, in a process called deoptimiza-
tion, the compiled code transfers execution back to an interpreter.
Deoptimized methods can be recompiled later without the failed
assumptions. Frame states encode the information necessary to
enable the transfer of control, namely the program point and the
values of local variables at that point. The content of frame states
is, thus, partly under attacker control and can contain attacker
provided constants. While SubstrateVM stores frame states in a
read-only data page, HotSpot embeds them into executable code
pages next to the machine code.

Unfortunately, embedding data in a code page exposes the data to
JIT spraying. Prior work has demonstrated the feasibility of abusing
constants embedded into code pages [4]. Strictly separating code
from data would require a significant change to HotSpot’s code
base and cannot be done within the GraalVM compiler alone. For
instance, the separation of code and metadata like frame states is a
long standing issue [17]. To mitigate JIT spraying, our implemen-
tation blinds constant data embedded into code pages and, when
compiling for HotSpot, also constants occurring in frame states.

4.2.3 Composite constants. Certain instructions can contain more
than one embedded constant, and these constants may be adjacent
in the instruction encoding. An attacker can exploit this to fab-
ricate constants larger than the constant blinding size limit [28].
Consider the example from Shinagawa et al. of an operation writing
a constant byte into a byte array at a constant offset:

bytes [0x58 - 16] = (byte) 0xc3;

This can compile directly to the following instruction:

mov BYTE PTR [rsi+0x58], 0xc3

The straightforward encoding of this instruction is c6 46 58
c3, containing our sample ROP gadget. This gives an attacker con-
trol over a 2-byte constant concatenated from 1-byte constants,
so blinding constants ≥ 2 bytes is an insufficient defense. In gen-
eral this situation is difficult to detect in the HIR graph because
the constants are inputs to different nodes, and we would need to
predict how they will be combined to a single instruction. While
implementing the detection of simple patterns such as this one is
possible, a hardcoded pattern detection is tedious and error prone.

The GraalVM compiler’s embedded assembler has a feature for
always emitting address displacements as 4-byte constants, even
if they would fit into a single byte. We use this as a partial miti-
gation against the 1-byte constant attack: If constant blinding for
constants ≥ 2 bytes is enabled, we force the assembler to always
emit 4-byte displacements. The above instruction is then encoded
as c6 86 58 00 00 00 c3, which does not contain the same gadget.
This sequence does still contain 00 00 c3, which encodes add BYTE
PTR [rax], al; ret. These instructions might still be useful to
an attacker, but with her choices severely restricted.

This approach also tears apart Shinagawa et al.’s 3-byte examples,
with the ret separated from the other instructions.

Padding displacements slightly increases the code size and leads
to a small performance degradation (see Section 5.1). Alternatively,
our implementation allows the user to trade performance overhead
for additional security by blinding even 1-byte constants. In the
example above, blinding 1-byte constants renders all the bytes in
the gadget unpredictable for the attacker.

... C(4711)

Add Deopt

... BC(4711) C(4711)

Add Deopt

Constant Blinding

Figure 2: Blinding of a deduplicated Constant node C based
on its usages. After blinding, the Add node uses a Blinded-
Constant node BC, whereas the Deoptimize node Deopt uses
the original Constant node. See Section 4.3.1 for details.

... C(4711)

φold...

Add Deopt

BC(4711) ... C(4711)

φnew φold...

Add Deopt

Constant Blinding

Figure 3: Blinding of a Constant node with a Phi node usage.
After blinding the Phi node, each Phi node usage transitively
uses the correct type of constant node. See Section 4.3.2 for
details.

4.3 Exceptions from blinding
The Constant nodes in the HIR graph can be categorized into two
groups. First, constants that can be controlled directly or indirectly
by an attacker. We gave examples of such constants in Section 4.2.1,
Section 4.2.2, and Section 4.2.3. Second, constants with a fixed
meaning and value range inserted by the compiler. For example,
the GraalVM compiler represents deoptimization points with De-
optimize nodes in the graph. These Deoptimize nodes receive a
Constant node as input that encodes the deoptimization reason. As
the value of these constants is not under attacker control, blinding
is irrelevant.

Our compiler phase decides whether a Constant node needs
blinding based on its use. If blinding is necessary, the phase replaces
the Constant node with a BlindedConstant node. For example,
the phase blinds Constant nodes used by an Add node, since the
constants could result from an attacker-controlled addition in the
input program. A Constant node with a Deoptimize node usage on
the other hand is not blinded.

4.3.1 Constant Deduplication. The GraalVM compiler deduplicates
equal nodes in the HIR graph. Deduplication not only keeps the
graph compact, but also implements global value numbering [7].
Consider the two nodes in Figure 2 as an example. Deduplication
leads to a single Constant node representing the inputs of both
the Add node and the Deoptimize node. Since only the Add node
should use a blinded constant, the constant blinding phase needs to
deduplicate the Constant node. To deduplicate the Constant node,
the phase first introduces a newBlindedConstant node representing
the blinded constant value. Next, the phase updates all usages that
should use a blinded constant to use the BlindedConstant node
instead.
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Figure 4: Overhead of three constant blinding sizes on execution time. The error bars were estimated with Fieller’s theorem [12]
with a confidence interval of 95%. The dotted lines represent the geometric mean with negative values excluded.

4.3.2 Phi Node Splitting. The HIR graph represents the program in
SSA form and uses Phi nodes to select between multiple inputs at
control-flow merges [10, 27]. Unfortunately, Phi nodes complicate
the deduplication process. As an example, consider the graph in
Figure 3. In the example, a Phi node receives, among other nodes, a
Constant node as input. The Phi node’s usages transitively use the
Constant node through the Phi node. However, only some of the Phi
node’s usages should use a blinded constant. In such a case the con-
stant blinding phase must deduplicate not only the Constant node,
but also the Phi node. Phi node deduplication happens similarly to
the deduplication of Constant nodes. First, the phase introduces a
new Phi node with the same inputs as the old one. Next, the phase
updates all the usages of the old Phi node that should use a blinded
constant to use the new Phi node instead. As Phi nodes can act
as inputs for other Phi nodes, the phase repeats the deduplication
process recursively in a depth-first manner. Once all Phi nodes
connected directly or indirectly to a Constant node are processed,
the following invariant holds: Each Phi node is connected (directly
or transitively) to either a Constant node or a BlindedConstant node,
but not both.

Cycles of Phi nodes in the graph are resolved using worklist itera-
tion, keeping a mapping from old Phi nodes to already deduplicated
ones to ensure termination.

4.3.3 Compiler-generated constants. Most constants in the HIR
graph are derived directly or via optimizations from the input pro-
gram. These can be controlled by an attacker who controls the input
code. Some other constants are independent of the input program
and are introduced by the compiler based on information from the
target VM. In particular, the code generated for tracking garbage
collection metadata can include addresses of VM-allocated data
areas as constants.

The GraalVM compiler’s compilation pipeline is divided into
high, mid, and low tiers, successively refining more abstract high-
level operations to concrete machine-specific instructions. Abstract
memory barrier operations for tracking garbage collection data
are expanded to memory accesses in the low tier, adding new VM-
specific constants to the graph. We consider constants that are
present in the graph before the low tier to be potentially attacker
controlled and subject to blinding. Constants only introduced dur-
ing the low tier are exempt from blinding because we consider them
not attacker controllable.

5 EVALUATION
5.1 Execution time overhead
We used version 0.11.0 of the standard Renaissance JVM benchmark
suite [24] to evaluate the overhead of our constant blinding imple-
mentation on application execution time. The GraalVM distribution
comes with benchmark tooling that is aware of this benchmark
suite, runs each benchmark appropriately, and summarizes results.

Each benchmark is run for a number of iterations to account
for virtual machine warmup and the benchmark’s variability. We
use the default numbers of iterations specified by the Renaissance
benchmark and calculate the average of the last 40% of runs, but at
least 6 and at most 20. All prior iterations serve as warmup. The
numbers range from 4 warmup and 6 measurement iterations for
the reactors benchmark to 70 + 20 iterations for finagle-chirper.

We used a development snapshot of GraalVM 22.0 Enterprise
Edition for JDK11. The benchmarks were run on an otherwise
unloaded multi-node Linux server, pinned to a single 18-core 2.3
GHz Intel Xeon E5-2699 v3 node.

We ran a total of four configurations: A baseline configuration
with constant blinding disabled (as is the default on GraalVM),
and one configuration each blinding constants ≥ 1, 2, and 4 bytes
respectively. Figure 4 summarizes our results, showing execution
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times normalized to the baseline, both for individual benchmarks
and as the geometric mean over all of them. Despite running the
recommended numbers of repetitions of each benchmark and re-
peating the experiment, four benchmarks on the right (gauss-mix,
page-rank, scala-doku, and scrabble) had repeatedly noisy results.
For that reason we give our results with and without these noisy
benchmarks.

Blinding constants ≥ 4 bytes had a geometric mean overhead
of 2.83 % (maximum: 7.96 %), for ≥ 2 bytes we observed a mean
overhead of 4.30 % (maximum: 13.35 %) and for ≥ 1 bytewe observed
a mean overhead of 16.15 % (maximum: 34.08 %). With the noisy
benchmarks excluded, we observe a slightly reducedmean overhead
of 2.83 %, 4.21 % and 15.69 % respectively. These numbers include
the mitigation against composite constants (Section 4.2.3).

The reason for the much larger impact of 1 byte constants is
that these are especially frequent: Looking at the dotty benchmark
as a representative example, we find that 64970 out of 87895 con-
stants (74 %) are bytes. Of these byte-sized constants, 41 % have at
least one use as an address offset, typically as object field offsets or
array indices.

5.2 Effectiveness
To evaluate the effectiveness of our constant blinding implementa-
tion, we adopted the idea of Dachshund [22]. Dachshund is a fuzzer
that searches for unblinded constants in JavaScript language VMs.
Since the original Dachshund implementation was not available,
we implemented a corresponding fuzzer with the ability to search
for unblinded constants ourselves. Specifically, our fuzzer generates
random Java programs containing random constants and compiles
the programs with the GraalVM compiler. After the compilation,
the fuzzer searches for the constants in the GraalVM compiler’s
output. Note that the fuzzer scans the generated machine code as
well as data embedded into code pages. When a constant 𝐶 occurs
as an array index, the fuzzer additionally searches for 𝐶 + 16 to
account for the array header offset (see Section 4.2.1).

We found that fuzzing for unblinded constants works reliably
for constants with a minimum size of three bytes or more. Without
constant blinding, the fuzzer found a large proportion of the random
constants in the input program occurring verbatim in the generated
machine code. Conversely, with constant blinding enabled, the
fuzzer found no unblinded constants of the given minimum size in
20,000 generated programs.

For random 2-byte constants the corresponding bytes occur with
a high probability at random locations anywhere in the instruction
stream. Such occurrences are not useful for our purpose because
we focus explicitly on gadgets resulting from attacker controllable
embedded constants (see Section 3). To still evaluate the effective-
ness of our implementation we adapted the fuzzer for the case
of 2-byte constants. When testing these small constants, instead
of generating constants with random bytes, the fuzzer uses fixed
byte sequences that resemble invalid x86-64 opcodes2. As a result,
the byte sequences no longer appear randomly in the instruction
stream. The only places where the fixed byte sequences can oc-
cur are in control-flow offsets, memory addresses, and actually
unblinded constants. We do not currently blind control-flow offsets

2We use the values 0x07, 0x27, 0x1e and 0x1f.

(see Section 6), and occurrences in memory addresses are not pre-
dictable thanks to ASLR. When excluding control-flow offsets and
memory addresses from the results, our fuzzer effectively uncovers
unblinded 2-byte constants if constant blinding is disabled. In con-
trast, when blinding constants with a minimum size of two bytes,
we found no unblinded constants in 20,000 generated programs.

Searching only for constants that appear verbatim in the in-
put program would not account for composite constants (see Sec-
tion 4.2.3). For example, assume that the fuzzer generated the array
access bytes[0x06] = (byte)0x1e. Recall from Section 4.2.3 that
such an input program can lead to the bytes 0𝑥06 + 16 = 0𝑥16
and 0𝑥1𝑒 being adjacent in the machine code. To find adjacent con-
stant bytes, our fuzzer also searches for concatenations of 1- and
2-byte constants. In the example the fuzzer would search for 0𝑥161𝑒
and 0𝑥1𝑒16, effectively uncovering the adjacent 1-byte constants.
We found that blinding constants with a minimum size of one byte
left no unblinded constants in 20,000 generated programs.

6 DISCUSSION & RELATEDWORK
Our performance evaluation for blinding all constant sizes con-
tradicts an overhead estimation of up to 80% as reported in the
literature [4]. We speculate that our better performance has two
main reasons. First, Athanasakis et al. consider all instructions with
immediate values, whereas our implementation focuses on imme-
diate values actually controllable by an attacker (see Section 4.3.3).
Second, Athanasakis et al. estimate the overhead by summing the
required cycles of all instructions involved. Since modern CPUs are
both superscalar and pipelined, such an estimate is overly conser-
vative.

Maisuradze et al. report an overhead of 21% on top of the un-
derlying constant blinding implementation [22]. Their approach is
not directly comparable to our implementation, however. Instead
of blinding constants of all sizes, Dachshund hardens the underly-
ing constant blinding implementation for ≥ 4 bytes by rewriting
JavaScript code with a proxy.

Lian et al. provide a constant blinding implementation for Spi-
derMonkey and report a remarkably low overhead of 1.39% [20].
Their implementation blinds constants in SpiderMonkey’s IR. Based
on our understanding of the IR, the lower overhead could result
from the high abstraction level of certain IR instructions (e.g., JSOP_
GETPROP). Constants used as part of the lowering of these high level
instructions are not blinded.

Librando provides code randomization, including constant blind-
ing, without modifying the JIT compiler [15]. Since the different
randomization techniques were not measured in isolation, no di-
rect comparison is possible. The numbers suggest, however, that
librando’s blackbox implementation of constant blinding leads to
a higher performance overhead. With RIM, Wu et al. provide a
defense against JIT spraying that splits 4-byte immediate values
into two 2-byte sequences [30]. As discussed previously, however,
2-byte constants can still be used in an attack. JITSafe provides a
JIT spraying mitigation for the Tamarin Flash Engine [8]. JITSafe
prevents an abuse of constants by loading the constant values from
the heap instead of inlining them as machine-code immediates.

Our implementation does not currently blind constant offsets
used in control-flow instructions (e.g., jmps and calls). Maisuradze
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et al. show that an attacker can exploit such constants by carefully
crafting code with predictable offsets [21]. The authors propose to
blind control-flow offsets similarly to data constants.

Constant blinding generally does not protect against gadgets
arising from the interpretation of bytes of adjacent instructions. To
deal with these gadgets, software diversity and CFI have emerged
as promising ideas. Software diversity builds on the observation
that abusing gadgets critically hinges on the exact knowledge of
the generated code layout. Attackers know the code layout either
because the code generation is predictable or because the attacker
leaks the code layout through a memory disclosure vulnerability.
Leakage-resilient software diversity, i.e., a combination of code
layout randomization with a protection against information disclo-
sure, protects against both of these attack vectors. With Readac-
tor, Crane et al. demonstrate the applicability to JIT compilers [9].
Leakage-resilient diversity could also prove effective against the
above-mentioned control-flow offset attack. CFI on the other hand
confines control-flow transfers to an approximation of the control-
flow graph determined through static analysis [2, 3]. RockJIT, for
example, extends the idea of control-flow diversity to JIT compiled
code [1]. We leave the implementation of a more general defense
against ROP gadgets for future work.

Another option to reduce the attack surface of language VMs is
to shift the focus from JIT compilation towards interpretation. Mi-
crosoft currently pursues this avenue with an experimental feature
in the Edge browser called “Super Duper Secure Mode” [23]. En-
abling this feature limits Edge’s JavaScript engine to interpretation
by disabling the JIT compiler, effectively trading performance for
increased security.

7 CONCLUSION
Owing to their widespread adoption, JIT compilers have become
a prime attack target and the JIT spraying attack in particular has
gained sophistication. Constant blinding, although not a silver bul-
let, is a valuable tool when defending against JIT spraying attacks.

We have presented our implementation of constant blinding for
GraalVM Enterprise Edition, taking into account the collective in-
sights of prior work over the past decade. Given GraalVM’s polyglot
nature, our implementation brings constant blinding to a multitude
of JIT compiled languages that lacked constant blinding so far. Our
performance evaluation shows that our implementation imposes a
geometric mean overhead of about 3 %, 4 % and 16% respectively,
depending on the minimum size of blinded constants. Our mea-
sured worst case overheads are much less prohibitive than prior
pessimistic overhead estimations of up to 80 %.
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